首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
KIT receptor is the prime target in gastrointestinal stromal tumor (GISTs) therapy. Second generation inhibitor, Sunitinib, binds to an inactivated conformation of KIT receptor and stabilizes it in order to prevent tumor formation. Here, we investigated the dynamic behavior of wild type and mutant D816H KIT receptor, and emphasized the extended A-loop (EAL) region (805–850) by conducting molecular dynamics simulation (~100?ns). We analyzed different properties such as root mean square cutoff or deviation, root mean square fluctuation, radius of gyration, solvent-accessible surface area, hydrogen bonding network analysis, and essential dynamics. Apart from this, clustering and cross-correlation matrix approach was used to explore the conformational space of the wild type and mutant EAL region of KIT receptor. Molecular dynamics analysis indicated that mutation (D816H) was able to alter intramolecular hydrogen bonding pattern and affected the structural flexibility of EAL region. Moreover, flexible secondary elements, specially, coil and turns were dominated in EAL region of mutant KIT receptor during simulation. This phenomenon increased the movement of EAL region which in turn helped in shifting the equilibrium towards the active kinase conformation. Our atomic investigation of mutant KIT receptor which emphasized on EAL region provided a better insight into the understanding of Sunitinib resistance mechanism of KIT receptor and would help to discover new therapeutics for KIT-based resistant tumor cells in GIST therapy.  相似文献   

2.
Activating mutations in c-KIT are associated with gastrointestinal stromal tumors, mastocytosis, and acute myeloid leukemia. In attempting to establish a murine model of human KIT(D816V) (hKIT(D816V))-mediated leukemia, we uncovered an unexpected relationship between cellular transformation and intracellular trafficking. We found that transport of hKIT(D816V) protein was blocked at the endoplasmic reticulum in a species-specific fashion. We exploited these species-specific trafficking differences and a set of localization domain-tagged KIT mutants to explore the relationship between subcellular localization of mutant KIT and cellular transformation. The protein products of fully transforming KIT mutants localized to the Golgi apparatus and to a lesser extent the plasma membrane. Domain-tagged KIT(D816V) targeted to the Golgi apparatus remained constitutively active and transforming. Chemical inhibition of intracellular transport demonstrated that Golgi localization is sufficient, but plasma membrane localization is dispensable, for downstream signaling mediated by KIT mutation. When expressed in murine bone marrow, endoplasmic reticulum-localized hKIT(D816V) failed to induce disease in mice, while expression of either Golgi-localized HyKIT(D816V) or cytosol-localized, ectodomain-deleted KIT(D816V) uniformly caused fatal myeloproliferative diseases. Taken together, these data demonstrate that intracellular, non-plasma membrane receptor signaling is sufficient to drive neoplasia caused by mutant c-KIT and provide the first animal model of myelomonocytic neoplasia initiated by human KIT(D816V).  相似文献   

3.
The type III receptor tyrosine kinase (RTK) KIT plays a crucial role in the transmission of cellular signals through phosphorylation events that are associated with a switching of the protein conformation between inactive and active states. D816V KIT mutation is associated with various pathologies including mastocytosis and cancers. D816V-mutated KIT is constitutively active, and resistant to treatment with the anti-cancer drug Imatinib. To elucidate the activating molecular mechanism of this mutation, we applied a multi-approach procedure combining molecular dynamics (MD) simulations, normal modes analysis (NMA) and binding site prediction. Multiple 50-ns MD simulations of wild-type KIT and its mutant D816V were recorded using the inactive auto-inhibited structure of the protein, characteristic of type III RTKs. Computed free energy differences enabled us to quantify the impact of D816V on protein stability in the inactive state. We evidenced a local structural alteration of the activation loop (A-loop) upon mutation, and a long-range structural re-organization of the juxta-membrane region (JMR) followed by a weakening of the interaction network with the kinase domain. A thorough normal mode analysis of several MD conformations led to a plausible molecular rationale to propose that JMR is able to depart its auto-inhibitory position more easily in the mutant than in wild-type KIT and is thus able to promote kinase mutant dimerization without the need for extra-cellular ligand binding. Pocket detection at the surface of NMA-displaced conformations finally revealed that detachment of JMR from the kinase domain in the mutant was sufficient to open an access to the catalytic and substrate binding sites.  相似文献   

4.
The colony stimulating factor-1 receptor (CSF-1R) and the stem cell factor receptor KIT, type III receptor tyrosine kinases (RTKs), are important mediators of signal transduction. The normal functions of these receptors can be compromised by gain-of-function mutations associated with different physiopatological impacts. Whereas KIT D816V/H mutation is a well-characterized oncogenic event and principal cause of systemic mastocytosis, the homologous CSF-1R D802V has not been identified in human cancers. The KIT D816V oncogenic mutation triggers resistance to the RTK inhibitor Imatinib used as first line treatment against chronic myeloid leukemia and gastrointestinal tumors. CSF-1R is also sensitive to Imatinib and this sensitivity is altered by mutation D802V. Previous in silico characterization of the D816V mutation in KIT evidenced that the mutation caused a structure reorganization of the juxtamembrane region (JMR) and facilitated its departure from the kinase domain (KD). In this study, we showed that the equivalent CSF-1R D802V mutation does not promote such structural effects on the JMR despite of a reduction on some key H-bonds interactions controlling the JMR binding to the KD. In addition, this mutation disrupts the allosteric communication between two essential regulatory fragments of the receptors, the JMR and the A-loop. Nevertheless, the mutation-induced shift towards an active conformation observed in KIT D816V is not observed in CSF-1R D802V. The distinct impact of equivalent mutation in two homologous RTKs could be associated with the sequence difference between both receptors in the native form, particularly in the JMR region. A local mutation-induced perturbation on the A-loop structure observed in both receptors indicates the stabilization of an inactive non-inhibited form, which Imatinib cannot bind.  相似文献   

5.
KIT mutations in GIST   总被引:1,自引:0,他引:1  
  相似文献   

6.
7.
A fundamental goal in cellular signaling is to understand allosteric communication, the process by which signals originated at one site in a protein propagate dependably to affect remote functional sites. Here, we describe the allosteric regulation of the receptor tyrosine kinase KIT. Our analysis evidenced that communication routes established between the activation loop (A-loop) and the distant juxtamembrane region (JMR) in the native protein were disrupted by the oncogenic mutation D816V positioned in the A-loop. In silico mutagenesis provided a plausible way of restoring the protein communication detected in the native KIT by introducing a counter-balancing second mutation D792E. The communication patterns observed in the native and mutated KIT correlate perfectly with the structural and dynamical features of these proteins. Particularly, a long-distance effect of the D816V mutation manifested as an important structural re-organization of the JMR in the oncogenic mutant was completely vanished in the double mutant D816V/D792E. This detailed characterization of the allosteric communication in the different forms of KIT, native and mutants, was performed by using a modular network representation composed of communication pathways and independent dynamic segments. Such representation permits to enrich a purely mechanistic interaction-based model of protein communication by the introduction of concerted local atomic fluctuations. This method, validated on KIT receptor, may guide a rational modulation of the physiopathological activities of other receptor tyrosine kinases.  相似文献   

8.
9.
In this work, we computationally identified the most detrimental missense mutations of KIT receptor causing gastrointestinal stromal tumors and analyzed the drug resistance of these missense mutations. Out of 31 missense mutations, 19 variants were commonly found less stable, deleterious and damaging by I-Mutant 2.0, SIFT and PolyPhen programs, respectively. Subsequently, we performed modeling of these 19 variants to understand their change in conformations with respect to native KIT receptor by computing their RMSD. Further, the native and 19 mutants were docked with the drug ‘Imatinib’ to explain the drug resistance of these detrimental missense mutations. Among the 19 mutants, we found by docking studies that 12 mutants, namely, F584C, F584L, V654A, L656P, T670I, R804W, D816F, D816V, D816Y, N822K, Y823D and E839K had less binding affinity with Imatinib than the native type. Finally, we analyzed that the loss of binding affinity of these 12 mutants, was due to altered flexibility in their binding amino acids with Imatinib as compared with native type by normal mode analysis. In our work, we found the novel data that the majority of the drug-binding amino acids in those 12 mutants had encountered loss of flexibility, which could be the theoretical basis for the cause of drug insensitivity.  相似文献   

10.
11.
12.
Activation of receptor tyrosine kinases needs tight control by tyrosine phosphatases to keep their normal function. In this study, we investigated the regulation of activation of the type III receptor tyrosine kinase KIT by protein tyrosine phosphatase receptor type E (PTPRE). We found that PTPRE can associate with wild-type KIT and inhibit KIT activation in a dose-dependent manner, although the activation of wild-type KIT is dramatically inhibited even when PTPRE is expressed at low level. The D816V mutation of KIT is the most frequently found oncogenic mutation in mastocytosis, and we found that PTPRE can associate and inhibit the activation of KIT/D816V in a dose dependent manner, but the inhibition is much weaker compared with wild-type KIT. Similar to mastocytosis, KIT mutations are the main oncogenic mutations in gastrointestinal stromal tumors (GISTs) although GISTs carry different types of KIT mutations. We further studied the regulation of the activation of GISTs-type KIT mutants and other mastocytosis-type KIT mutants by PTPRE. Indeed, PTPRE can almost block the activation of GISTs-type KIT mutants, while the activation of mastocytosis-type KIT mutants is more resistant to the inhibition of PTPRE. Taken together, our results suggest that PTPRE can associate with KIT, and inhibit the activation of both wild-type KIT and GISTs-type KIT mutants, while the activation of mastocytosis-type KIT mutants is more resistant to PTPRE.  相似文献   

13.
Tyrosine phosphorylation, a highly regulated post-translational modification, is carried out by the enzyme tyrosine kinase (TK). TKs are important mediators in signaling cascades, facilitating diverse biological processes in response to stimuli. TKs may acquire mutations leading to malignancy and are viable targets for anti-cancer drugs. Mast/stem cell growth factor receptor KIT is a TK involved in cell differentiation, whose dysregulation leads to various types of cancer, including gastrointestinal stromal tumors, leukemia, and melanoma. KIT can be targeted by a range of inhibitors that predominantly bind to the inactive state of the enzyme. A mutation Y823D in the activation loop of KIT is known to be responsible for the loss of sensitivity to some drugs in metastatic tumors. We used all-atom molecular dynamics simulations to study the impact of Y823D on the KIT conformation and dynamics and compared it to the effect of phosphorylation of Y823. We simulated in total 6.4 μs of wild-type, mutant and phosphorylated KIT in the active- and inactive-state conformations. We found that Y823D affects the protein dynamics differently: in the active state, the mutation increases the protein stability, whereas in the inactive state it induces local destabilization, thus shifting the dynamic equilibrium towards the active state, altering the communication between distant regulatory regions. The observed dynamics of the Y823D mutant is similar to the dynamics of KIT phosphorylated at position Y823, thus we hypothesize that this mutation mimics a constitutively active kinase, which is not responsive to inhibitors that bind its inactive conformation.  相似文献   

14.
The features in partially folded intermediates that allow the group II chaperonins to distinguish partially folded from native states remain unclear. The archaeal group II chaperonin from Methanococcus Mauripaludis (Mm‐Cpn) assists the in vitro refolding of the well‐characterized β‐sheet lens protein human γD‐crystallin (HγD‐Crys). The domain interface and buried cores of this Greek key conformation include side chains, which might be exposed in partially folded intermediates. We sought to assess whether particular features buried in the native state, but absent from the native protein surface, might serve as recognition signals. The features tested were (a) paired aromatic side chains, (b) side chains in the interface between the duplicated domains of HγD‐Crys, and (c) side chains in the buried core which result in congenital cataract when substituted. We tested the Mm‐Cpn suppression of aggregation of these HγD‐Crys mutants upon dilution out of denaturant. Mm‐Cpn was capable of suppressing the off‐pathway aggregation of the three classes of mutants indicating that the buried residues were not recognition signals. In fact, Mm‐Cpn recognized the HγD‐Crys mutants better than (wild‐type) WT and refolded most mutant HγD‐Crys to levels twice that of WT HγD‐Crys. This presumably represents the increased population or longer lifetimes of the partially folded intermediates of the mutant proteins. The results suggest that Mm‐Cpn does not recognize the features of HγD‐Crys tested—paired aromatics, exposed domain interface, or destabilized core—but rather recognizes other features of the partially folded β‐sheet conformation that are absent or inaccessible in the native state of HγD‐Crys.  相似文献   

15.
Abed Y  Pizzorno A  Bouhy X  Boivin G 《PLoS pathogens》2011,7(12):e1002431
Neuraminidase (NA) mutations conferring resistance to NA inhibitors were believed to compromise influenza virus fitness. Unexpectedly, an oseltamivir-resistant A/Brisbane/59/2007 (Bris07)-like H1N1 H275Y NA variant emerged in 2007 and completely replaced the wild-type (WT) strain in 2008-2009. The NA of such variant contained additional NA changes (R222Q, V234M and D344N) that potentially counteracted the detrimental effect of the H275Y mutation on viral fitness. Here, we rescued a recombinant Bris07-like WT virus and 4 NA mutants/revertants (H275Y, H275Y/Q222R, H275Y/M234V and H275Y/N344D) and characterized them in vitro and in ferrets. A fluorometric-based NA assay was used to determine Vmax and Km values. Replicative capacities were evaluated by yield assays in ST6Gal1-MDCK cells. Recombinant NA proteins were expressed in 293T cells and surface NA activity was determined. Infectivity and contact transmission experiments were evaluated for the WT, H275Y and H275Y/Q222R recombinants in ferrets. The H275Y mutation did not significantly alter Km and Vmax values compared to WT. The H275Y/N344D mutant had a reduced affinity (Km of 50 vs 12 μM) whereas the H275Y/M234V mutant had a reduced activity (22 vs 28 U/sec). In contrast, the H275Y/Q222R mutant showed a significant decrease of both affinity (40 μM) and activity (7 U/sec). The WT, H275Y, H275Y/M234V and H275Y/N344D recombinants had comparable replicative capacities contrasting with H275Y/Q222R mutant whose viral titers were significantly reduced. All studied mutations reduced the cell surface NA activity compared to WT with the maximum reduction being obtained for the H275Y/Q222R mutant. Comparable infectivity and transmissibility were seen between the WT and the H275Y mutant in ferrets whereas the H275Y/Q222R mutant was associated with significantly lower lung viral titers. In conclusion, the Q222R reversion mutation compromised Bris07-like H1N1 virus in vitro and in vivo. Thus, the R222Q NA mutation present in the WT virus may have facilitated the emergence of NAI-resistant Bris07 variants.  相似文献   

16.
The X-ray crystal structure of the cAMP-liganded D138L mutant of Escherichia coli catabolite gene activator protein (CAP) was determined at a resolution of 1.66?. This high resolution crystal structure reveals four cAMP binding sites in the homodimer. Two anti conformations of cAMPs (anti-cAMP) locate between the β-barrel and the C-helix of each subunit; two syn conformations of cAMPs (syn-cAMP) bind on the surface of the C-terminal domain. With two syn-cAMP molecules bound, the D138L CAP is highly symmetrical with both subunits assuming a "closed" conformation. These differences make the hinge region of the mutant more flexible. Protease susceptibility measurements indicate that D138L is more susceptible to proteases than that of wild type (WT) CAP. The results of protein dynamic experiments (H/D exchange measurements) indicate that the structure of D138L mutant is more dynamic than that of WT CAP, which may impact the recognition of specific DNA sequences.  相似文献   

17.
Therapeutically validated oncoproteins in myeloproliferative neoplasms (MPN) include BCR-ABL1 and rearranged PDGFR proteins. The latter are products of intra- ( e.g. FIP1L1-PDGFRA) or inter-chromosomal ( e.g. ETV6-PDGFRB ) gene fusions. BCR-ABL1 is associated with chronic myelogenous leukaemia (CML) and mutant PDGFR with an MPN phenotype characterized by eosinophilia and in addition, in case of FIP1L1-PDGFRA, bone marrow mastocytosis. These genotype-phenotype associations have been effectively exploited in the development of highly accurate diagnostic assays and molecular targeted therapy. It is hoped that the same will happen in other MPN with specific genetic alterations: polycythemia vera ( JAK2 V617F and other JAK2 mutations), essential thrombocythemia ( JAK2 V617F and MPL5 15 mutations), primary myelofibrosis ( JAK2 V617F and MPL515 mutations), systemic mastocytosis ( KIT D816V and other KIT mutations) and stem cell leukaemia/lymphoma ( ZNF198-FGFR1 and other FGFR1 fusion genes). The current review discusses the above-listed mutant molecules in the context of their value as drug targets.  相似文献   

18.
The human mast cell line (HMC-1(560, 816)) was used to study the effect of the tyrosine kinase inhibitor STI571 (Glivec) on exocytosis, intracellular Ca(2+) and pH changes, because STI571 inhibits the proliferation of HMC-1(560) and induces its apoptosis. This drug does not have these effects on HMC-1(560, 816). Exocytosis in HMC-1(560, 816) cells can be stimulated by alkalinisation with NH(4)Cl as well as with ionomycin. Surprisingly 24-h pre-incubation with STI571 decreases spontaneous histamine release of HMC-1(560, 816) cells, but increases the histamine response after alkalinisation and not after ionomycin-stimulation. After addition of NH(4)Cl, pH(i) has a higher increase in STI571 pre-incubated cells, without changing intracellular Ca(2+) concentration. Activation of PKC in combination with tyrosine kinase inhibition increases also histamine release in HMC-1(560, 816) cells. Strangely, STI571 pre-incubated cells with PKC inhibited by rottlerin show the same effects. In these cells, cytosolic pH increases more than in control cells. This is the first report of STI571 effect in HMC-1(560, 816) cells. It seems that different pathways modulate signals for proliferation and exocytosis. STI571 does not only inhibit KIT TyrK, but may also influence cytosolic pH after alkalinisation in both cell lines, HMC-1(560) and HMC-1(560, 816), and this ends in induced histamine release. This work is important since HMC-1(560, 816) cells are reported in 80% of aggressive systemic mastocytosis cases and the understanding of some signalling pathways involved in mast cell response could facilitate drug targeting.  相似文献   

19.
Zhang X  Gureasko J  Shen K  Cole PA  Kuriyan J 《Cell》2006,125(6):1137-1149
The mechanism by which the epidermal growth factor receptor (EGFR) is activated upon dimerization has eluded definition. We find that the EGFR kinase domain can be activated by increasing its local concentration or by mutating a leucine (L834R) in the activation loop, the phosphorylation of which is not required for activation. This suggests that the kinase domain is intrinsically autoinhibited, and an intermolecular interaction promotes its activation. Using further mutational analysis and crystallography we demonstrate that the autoinhibited conformation of the EGFR kinase domain resembles that of Src and cyclin-dependent kinases (CDKs). EGFR activation results from the formation of an asymmetric dimer in which the C-terminal lobe of one kinase domain plays a role analogous to that of cyclin in activated CDK/cyclin complexes. The CDK/cyclin-like complex formed by two kinase domains thus explains the activation of EGFR-family receptors by homo- or heterodimerization.  相似文献   

20.
【目的】研究长双歧杆菌(Bifidobacterium longum)JCM1217的N-乙酰氨基己糖1-位激酶(Nacetylhexosamine 1-kinase,Nah K)中对催化活性有影响的位点。【方法】利用点突变试剂盒,获得Nah K的4个位点的共10种单点突变体表达菌株。诱导表达并纯化野生型和突变体酶,用DNS法和NADH偶联的微孔板分光光度法检测野生型及突变体酶的最适p H和最适Mg~(2+)浓度,并测定酶促反应动力学参数。【结果】D208A、D208N、D208E和I24A四种突变体的催化活性几乎丧失。突变体H31A、H31V、F247A和I24V的最适p H由野生型的7.5变为7.0,突变体H31A和F247A的最适Mg~(2+)浓度由野生型的5 mmol/L变为10 mmol/L。反应动力学参数测定结果表明,突变体F247Y对底物Glc NAc/Gal NAc及ATP的催化活性均高于野生型。【结论】通过定点突变,确定了对Nah K催化活性有影响的4个位点,并且获得了一个催化效率提高的突变体(F247Y),为进一步对Nah K进行分子改造奠定了一定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号