首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We previously reported that a helical trigger segment within the GCN4 leucine zipper monomer is indispensable for the formation of its parallel two-stranded coiled coil. Here, we demonstrate that the intrinsic secondary structure of the trigger site is largely stabilized by an intrahelical salt bridge. Removal of this surface salt bridge by a single amino acid mutation induced only minor changes in the backbone structure of the GCN4 leucine zipper dimer as verified by nuclear magnetic resonance. The mutation, however, substantially destabilized the dimeric structure. These findings support the proposed hierarchic folding mechanism of the GCN4 coiled coil in which local helix formation within the trigger segment precedes dimerization.  相似文献   

2.
F G Meng  X Zeng  Y K Hong  H M Zhou 《Biochimie》2001,83(10):953-956
The dissociation and unfolding behavior of the GCN4 leucine zipper has been studied using SDS titration. Circular dichroism (CD) spectra showed that the alpha-helix content of the leucine zipper (20 microM) decreased during the sodium dodecyl sulfate (SDS) titration. However, the alpha-helix content of the leucine zipper still remained significant in the presence of 1 mM SDS, with little change detected when the SDS concentration further increased to 2 mM. The dimer dissociation of the leucine zipper is also a co-operative process during SDS titration; with no dimer remaining when SDS concentration reached 1 mM, as shown by electrophoresis and the the theta(222)/theta(208) ratio. Our results indicate that SDS efficiently induces leucine zipper dimer dissociation with the monomers still partially folded. The experimental results provide important evidence for the previous model that partial helix formation precedes dimerization in coiled coil folding.  相似文献   

3.
The leucine zipper motif is a characteristic amino acid sequence found in dimeric DNA-binding proteins. Computer-generated models for leucine zippers were constructed as alpha-helical coiled dimers with leucine repeated every seventh residue. An empirical Gibbs free energy, delta G, function which incorporates hydrophobic force, electrostatic interactions, and conformational entropy loss as the major intermolecular interactions was used to estimate the delta G of dimer formation in fos, jun, and GCN4 zipper sequences. The calculations showed that complexes known to form stable homo- or heterodimers have favorable (negative) delta G, while other less stable complexes have unfavorable (positive) delta G. Leucines in position d of the coiled coil contribute large hydrophobic stabilization energies while residues in the a position contribute less to dimer stability. Hydrophobic contributions show little sequence specificity, however, and do not contribute significantly to homo/heterodimer preference. Charged residues in the e and g positions, on the other hand, determine homo/heterodimer specificity. In GCN4 homodimers, residues GLU el, Glu b2, Lys g2, and Lys e4 greatly contribute to dimer stability. The preferential stability of fos-jun heterodimer over the jun-jun and fos-fos homodimers is primarily due to the side chains Asp b1, Glu g1, Asp b2, Glu e2, Glu g2, Glu g3, and Lys a5 of the fos helix, and Arg c1, Lys g1, Lys b2, Lys e2, Arg e4, and Glu g4 of the jun helix.  相似文献   

4.
5.
6.
T Heimburg  J Schünemann  K Weber  N Geisler 《Biochemistry》1999,38(39):12727-12734
Coiled coils of different order were investigated using infrared (IR) spectroscopy. Recently, we demonstrated that dimeric coiled coils display unique vibrational spectra with at least three separable bands instead of only one band of a classical alpha-helix in the amide I region.This was attributed to a distortion of the helical structure by the supercoil bending, giving rise to bands that are not observed in the undistorted helix. Here, we investigated coiled coils forming trimers, tetramers, and pentamers. These higher order coiled coils, in general, possess larger superhelical pitches, resulting in a smaller helical distortion. We found that all coiled coils studied, including the native dimeric GCN4 leucine zipper and its variants leading to parallel trimers and tetramers as well as the rod portions of fibritin (parallel trimer), alpha-actinin (antiparallel spectrin type trimer), and COMP (parallel pentamer), displayed the typical three band pattern of the coiled coil amide I spectra. However, the separation of these three bands and their positional deviation from the classical alpha-helical band position was correlated to the extent of the helical distortion as reflected by the pitch values of the supercoils. The most pronounced spectral anomaly was found for the tropomyosin dimer with a reported helical pitch of 137 A, whereas the smallest spectral distortion was found for the pentameric COMP complex and the tetrameric leucine zipper mutant, both with a pitch of about 205 A.  相似文献   

7.
8.
The dimeric interface of the leucine zipper coiled coil from GCN4 has been used to probe the contributions of hydrophobic and hydrogen bonding interactions to protein stability. We have determined the energetics of placing Ile or Asn residues at four buried positions in a two-stranded coiled coil. As expected, Ile is favored over Asn at these buried positions, but not as much as predicted by considering only the hydrophobic effect. It appears that interstrand hydrogen bonds form between the side-chains of the buried Asn residues and these contribute to the conformational stability of the coiled-coil peptides. However, these contributions are highly dependent on the locations of the Asn pairs. The effect of an Ile to Asn mutation is greatest at the N terminus of the peptide and decreases almost twofold as we move the substitution from the N to C-terminal heptads.  相似文献   

9.
10.
11.
Coiled-coil sequences in proteins commonly share a seven-amino acid repeat with nonpolar side chains at the first (a) and fourth (d) positions. We investigate here the role of a 3-3-1 hydrophobic repeat containing nonpolar amino acids at the a, d, and g positions in determining the structures of coiled coils using mutants of the GCN4 leucine zipper dimerization domain. When three charged residues at the g positions in the parental sequence are replaced by nonpolar alanine or valine side chains, stable four-helix structures result. The X-ray crystal structures of the tetramers reveal antiparallel, four-stranded coiled coils in which the a, d, and g side chains interlock in a combination of knobs-into-knobs and knobs-into-holes packing. Interfacial interactions in a coiled coil can therefore be prescribed by hydrophobic-polar patterns beyond the canonical 3-4 heptad repeat. The results suggest that the conserved, charged residues at the g positions in the GCN4 leucine zipper can impart a negative design element to disfavor thermodynamically more stable, antiparallel tetramers.  相似文献   

12.
Capping interactions associated with specific sequences at or near the ends of alpha-helices are important determinants of the stability of protein secondary and tertiary structure. We investigate here the role of the helix-capping motif Ser-X-X-Glu, a sequence that occurs frequently at the N termini of alpha helices in proteins, on the conformation and stability of the GCN4 leucine zipper. The 1.8 A resolution crystal structure of the capped molecule reveals distinct conformations, packing geometries and hydrogen-bonding networks at the amino terminus of the two helices in the leucine zipper dimer. The free energy of helix stabilization associated with the hydrogen-bonding and hydrophobic interactions in this capping structure is -1.2 kcal/mol, evaluated from thermal unfolding experiments. A single cap thus contributes appreciably to stabilizing the terminated helix and thereby the native state. These results suggest that helix capping plays a further role in protein folding, providing a sensitive connector linking alpha-helix formation to the developing tertiary structure of a protein.  相似文献   

13.
The leucine zipper is a dimeric coiled-coil structural motif consisting of four to six heptad repeats, designated (abcdefg)(n). In the GCN4 leucine zipper, a position 16 in the third heptad is occupied by an Asn residue whereas the other a positions are Val residues. Recently, we have constructed variants of the GCN4 leucine zipper in which the a position Val residues were replaced by Ile. The folding and unfolding of the wild-type GCN4 leucine zipper and the Val to Ile variant both adhere to a simple two-state mechanism. In this study, another variant of the GCN4 leucine zipper was constructed by moving the single Asn residue from a position 16 to a position 9. This switch causes the thermal unfolding of the GCN4 leucine zipper to become three state. The unfolding pathway of this variant was determined by thermal denaturation, limited proteinase K digestion, and sedimentation equilibrium analysis. Our data are consistent with a model in which the variant first unfolds from its N terminus and changes the oligomerization specificity from a native dimer to a partially unfolded intermediate containing a mixture of dimers and trimers and then completely unfolds to unstructured monomers.  相似文献   

14.
The folding of coiled coil peptides has traditionally been interpreted in terms of native dimer and unfolded monomers. Calculations using AGADIR and experimental studies of fragments suggest that the monomers of the coiled coil peptide, GCN4-p1, contain significant residual helical structure. A simple model based on diffusion-collision theory predicts not only the measured folding rate within an order of magnitude, but also predicts remarkably well the effect of alanine to glyXcine mutations. We suggest that intrinsic helix stability is a major determinant of the folding rate of the GCN4 coiled coil.  相似文献   

15.
Trypanosoma brucei BILBO1 (TbBILBO1) is an essential component of the flagellar pocket collar of trypanosomes. We recently reported the high resolution structure of the N-terminal domain of TbBILBO1. Here, we provide further structural dissections of its other three constituent domains: EF-hand, coiled coil, and leucine zipper. We found that the EF-hand changes its conformation upon calcium binding, the central coiled coil forms an antiparallel dimer, and the C-terminal leucine zipper appears to contain targeting information. Furthermore, interdimer interactions between adjacent leucine zippers allow TbBILBO1 to form extended filaments in vitro. These filaments were additionally found to condense into fibers through lateral interactions. Based on these experimental data, we propose a mechanism for TbBILBO1 assembly at the flagellar pocket collar.  相似文献   

16.
17.
The hydrophobic core of the GCN4 leucine-zipper dimerization domain is formed by a parallel helical association between nonpolar side chains at the a and d positions of the heptad repeat. Here we report a self-assembling coiled-coil array formed by the GCN4-pAe peptide that differs from the wild-type GCN4 leucine zipper by alanine substitutions at three charged e positions. GCN4-pAe is incompletely folded in normal solution conditions yet self-assembles into an antiparallel tetraplex in crystals by formation of unanticipated hydrophobic seams linking the last two heptads of two parallel double-stranded coiled coils. The GCN4-pAe tetramers in the lattice associate laterally through the identical interactions to those in the intramolecular dimer-dimer interface. The van der Waals packing interaction in the solid state controls extended supramolecular assembly of the protein, providing an unusual atomic scale view of a mesostructure.  相似文献   

18.
Voltage‐gated K+ channels co‐assemble with auxiliary β subunits to form macromolecular complexes. In heart, assembly of Kv7.1 pore‐forming subunits with KCNE1 β subunits generates the repolarizing K+ current IKS. However, the detailed nature of their interface remains unknown. Mutations in either Kv7.1 or KCNE1 produce the life‐threatening long or short QT syndromes. Here, we studied the interactions and voltage‐dependent motions of IKS channel intracellular domains, using fluorescence resonance energy transfer combined with voltage‐clamp recording and in vitro binding of purified proteins. The results indicate that the KCNE1 distal C‐terminus interacts with the coiled‐coil helix C of the Kv7.1 tetramerization domain. This association is important for IKS channel assembly rules as underscored by Kv7.1 current inhibition produced by a dominant‐negative C‐terminal domain. On channel opening, the C‐termini of Kv7.1 and KCNE1 come close together. Co‐expression of Kv7.1 with the KCNE1 long QT mutant D76N abolished the K+ currents and gated motions. Thus, during channel gating KCNE1 is not static. Instead, the C‐termini of both subunits experience molecular motions, which are disrupted by the D76N causing disease mutation.  相似文献   

19.
The alphavirus nucleocapsid core is formed through the energetic contributions of multiple noncovalent interactions mediated by the capsid protein. This protein consists of a poorly conserved N-terminal region of unknown function and a C-terminal conserved autoprotease domain with a major role in virion formation. In this study, an 18-amino-acid conserved region, predicted to fold into an alpha-helix (helix I) and embedded in a low-complexity sequence enriched with basic and Pro residues, has been identified in the N-terminal region of the alphavirus capsid proteins. In Sindbis virus, helix I spans residues 38 to 55 and contains three conserved leucine residues, L38, L45, and L52, conforming to the heptad amino acid organization evident in leucine zipper proteins. Helix I consists of an N-terminally truncated heptad and two complete heptad repeats with beta-branched residues and conserved leucine residues occupying the a and d positions of the helix, respectively. Complete or partial deletion of helix I, or single-site substitutions at the conserved leucine residues (L45 and L52), caused a significant decrease in virus replication. The mutant viruses were more sensitive to elevated temperature than wild-type virus. These mutant viruses also failed to accumulate cores in the cytoplasm of infected cells, although they did not have defects in protein translation or processing. Analysis of these mutants using an in vitro assembly system indicated that the majority were defective in core particle assembly. Furthermore, mutant proteins showed a trans-dominant negative phenotype in in vitro assembly reactions involving mutant and wild-type proteins. We propose that helix I plays a central role in the assembly of nucleocapsid cores through coiled coil interactions. These interactions may stabilize subviral intermediates formed through the interactions of the C-terminal domain of the capsid protein and the genomic RNA and contribute to the stability of the virion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号