首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to understand the salt tolerance and secretion in mangrove plant species, gel electrophoresis coupled with LC‐MS‐based proteomics was used to identify key transport proteins in the plasma membrane (PM) and tonoplast fractions of Avicennia officinalis leaves. PM and tonoplast proteins were purified using two‐aqueous‐phase partitioning and density gradient centrifugation, respectively. Forty of the 254 PM proteins and 31 of the 165 tonoplast proteins identified were predicted to have transmembrane domains. About 95% of the identified proteins could be classified based on their functions. The major classes of proteins were predicted to be involved in transport, metabolic processes, defense/stress response, and signal transduction, while a few of the proteins were predicted to be involved in other functions such as membrane trafficking. The main classes of transporter proteins identified included H+‐ATPases, ATP‐binding cassette transporters, and aquaporins, all of which could play a role in salt secretion. These data will serve as the baseline membrane proteomic dataset for Avicennia species. Further, this information can contribute to future studies on understanding the mechanism of salt tolerance in halophytes in addition to salt secretion in mangroves. All MS data have been deposited in the ProteomeXchange with identifier PXD000837 ( http://proteomecentral.proteomexchange.org/dataset/PXD000837 ).  相似文献   

2.
Porcine epidemic diarrhea virus (PEDV) causes an acute, highly contagious, and devastating viral enteric disease with a high mortality rate in suckling pigs. A large‐scale outbreak of PED occurred in China in 2010, with PEDV emerging in the United States in 2013 and spreading rapidly, posing significant economic and public health concerns. In this study, LC–MS/MS coupled to iTRAQ labeling was used to quantitatively identify differentially expressed cellular proteins in PEDV‐infected Vero cells. We identified 49 differentially expressed cellular proteins, of which 8 were upregulated and 41 downregulated. These differentially expressed proteins were involved in apoptosis, signal transduction, and stress responses. Based on these differentially expressed proteins, we propose that PEDV might utilize apoptosis and extracellular signal regulated kinases pathways for maximum viral replication. Our study is the first attempt to analyze the protein profile of PEDV‐infected cells by quantitative proteomics, and we believe our findings provide valuable information with respect to better understanding the host response to PEDV infection.  相似文献   

3.
To gain a better understanding of salt stress responses in plants, we used a proteomic approach to investigate changes in rice (Oryza sativa) root plasma‐membrane‐associated proteins following treatment with 150 mmol/L NaCl. With or without a 48 h salt treatment, plasma membrane fractions from root tip cells of a salt‐sensitive rice cultivar, Wuyunjing 8, were purified by PEG aqueous two‐phase partitioning, and plasma‐membrane‐associated proteins were separated by IEF/SDS‐PAGE using an optimized rehydration buffer. Comparative analysis of three independent biological replicates revealed that the expressions of 18 proteins changed by more than 1.5‐fold in response to salt stress. Of these proteins, nine were up‐regulated and nine were down‐regulated. MS analysis indicated that most of these membrane‐associated proteins are involved in important physiological processes such as membrane stabilization, ion homeostasis, and signal transduction. In addition, a new leucine‐rich‐repeat type receptor‐like protein kinase, OsRPK1, was identified as a salt‐responding protein. Immuno‐blots indicated that OsRPK1 is also induced by cold, drought, and abscisic acid. Using immuno‐histochemical techniques, we determined that the expression of OsRPK1 was localized in the plasma membrane of cortex cells in roots. The results suggest that different rice cultivars might have different salt stress response mechanisms.  相似文献   

4.
The plasma proteome has proven to be one of the most challenging proteomes to profile using currently available proteomics technologies. A plethora of methodologies have been used to profile human plasma in order to discover potential biomarkers for disease and for therapy optimization. Affinity‐based prefractionation coupled to MS has been shown to be one of the most successful ways to dig deeper into the plasma proteome. Depletion of high abundant plasma proteins is becoming an initial method of choice in any plasma profiling project. However, several other affinity‐based enrichment methods have been published in recent years. Here we review both protein and peptide affinity prefractionation methods coupled with MS‐based proteomics. Analysis of the proportion of cellular and extracellular annotated proteins of publicly available MS plasma proteomics data is performed to estimate the analytical depth of various prefractionation methods.  相似文献   

5.
This study profiled the plasma proteins of patients infected by the 2011 H1N1 influenza virus. Differential protein expression was identified in plasma obtained from noninfected control subjects (n = 15) and H1N1‐infected subjects (n = 15). Plasma proteins were separated by a 2DE large gel system and identified by nano‐ultra performance LC‐MS. Western blot assays were performed to validate proteins. Eight plasma proteins were upregulated and six proteins were downregulated among 3316 plasma proteins in the H1N1‐infected group as compared with the control group. Of 14 up‐ and downregulated proteins, nine plasma proteins were validated by Western blot analysis. Putative protein FAM 157A, leucine‐rich alpha 2 glycoprotein, serum amyloid A protein, and dual oxidase 1 showed significant differential expression. The identified plasma proteins could be potential candidates for biomarkers of H1N1 influenza viral infection. Further studies are needed to develop these proteins as diagnostic biomarkers.  相似文献   

6.
Bufalin (BF) exhibited antiproliferation and antimigration effects on human A549 lung cancer cells. To search its target‐related proteins, protein expression profiles of BF‐treated and control cells were compared using two quantitative proteomic methods, iTRAQ‐based and label‐free proteomic analysis. A total of 5428 proteins were identified in iTRAQ‐based analysis while 6632 proteins were identified in label‐free analysis. The number of common identified proteins of both methods was 4799 proteins. By application of 1.20‐fold for upregulated and 0.83‐fold for downregulated cutoff values, 273 and 802 differentially expressed proteins were found in iTRAQ‐based and label‐free analysis, respectively. The number of common differentially expressed proteins of both methods was 45 proteins. Results of bioinformational analysis using MetacoreTM showed that the two proteomic methods were complementary and both suggested the involvement of oxidative stress and regulation of gene expression in the effects of BF, and fibronectin‐related pathway was suggested to be an important pathway affected by BF. Western blotting assay results confirmed BF‐induced change in levels of fibronectin and other related proteins. Overexpression of fibronectin by plasmid transfection ameliorated antimigration effects of BF. Results of the present study provided information about possible target‐related proteins and signal network of BF.  相似文献   

7.
8.
Anodophilic bacteria have the ability to generate electricity in microbial fuel cells (MFCs) by extracellular electron transfer to the anode. We investigated the anode‐specific responses of Shewanella oneidensis MR‐1, an exoelectroactive Gammaproteobacterium, using for the first time iTRAQ and 2D‐LC MS/MS driven membrane proteomics to compare protein abundances in S. oneidensis when generating power in MFCs, and growing in a continuous culture. The regulated dataset produced was enriched in membrane proteins. Proteins shown to be more abundant in anaerobic electroactive anodic cells included efflux pump TolC and an uncharacterised tetratricopeptide repeat (TPR) protein, whilst the TonB2 system and associated uncharacterised proteins such as TtpC2 and DUF3450 were more abundant in microaerobic planktonic cells. In order to validate the iTRAQ data, the functional role for TolC was examined using a δTolC knockout mutant of S. oneidensis. Possible roles for the uncharacterised proteins were identified using comparative bioinformatics. We demonstrate that employing an insoluble extracellular electron acceptor requires multiple proteins involved in cell surface properties. All MS and processed data are available via ProteomeXchange with identifier PXD004090.  相似文献   

9.
With its predicted proteome of 1550 proteins (data set Etalon) Helicobacter pylori 26695 represents a perfect model system of medium complexity for investigating basic questions in proteomics. We analyzed urea‐solubilized proteins by 2‐DE/MS (data set 2‐DE) and by 1‐DE‐LC/MS (Supprot); proteins insoluble in 9 M urea but solubilized by SDS (Pellet); proteins precipitating in the Sephadex layer at the application side of IEF (Sephadex) by 1‐DE‐LC/MS; and proteins precipitating close to the application side within the IEF gel by LC/MS (Startline). The experimental proteomics data of H. pylori comprising 567 proteins (protein coverage: 36.6%) were stored in the Proteome Database System for Microbial Research ( http://www.mpiib‐berlin.mpg.de/2D‐PAGE/ ), which gives access to raw mass spectra (MALDI‐TOF/TOF) in T2D format, as well as to text files of peak lists. For data mining the protein mapping and comparison tool PROMPT ( http://webclu.bio.wzw.tum.de/prompt/ ) was used. The percentage of proteins with transmembrane regions, relative to all proteins detected, was 0, 0.2, 0, 0.5, 3.8 and 6.3% for 2‐DE, Supprot, Startline, Sephadex, Pellet, and Etalon, respectively. 2‐DE does not separate membrane proteins because they are insoluble in 9 M urea/70 mM DTT and 2% CHAPS. SDS solubilizes a considerable portion of the urea‐insoluble proteins and makes them accessible for separation by SDS‐PAGE and LC. The 2‐DE/MS analysis with urea‐solubilized proteins and the 1‐DE‐LC/MS analysis with the urea‐insoluble protein fraction (Pellet) are complementary procedures in the pursuit of a complete proteome analysis. Access to the PROMPT‐generated diagrams in the Proteome Database allows the mining of experimental data with respect to other functional aspects.  相似文献   

10.
The in‐depth analysis of complex proteome samples requires fractionation of the sample into subsamples prior to LC‐MS/MS in shotgun proteomics experiments. We have established a 3D workflow for shotgun proteomics that relies on protein separation by 1D PAGE, gel fractionation, trypsin digestion, and peptide separation by in‐gel IEF, prior to RP‐HPLC‐MS/MS. Our results show that applying peptide IEF can significantly increase the number of proteins identified from PAGE subfractionation. This method delivers deeper proteome coverage and provides a large degree of flexibility in experimentally approaching highly complex mixtures by still relying on protein separation according to molecular weight in the first dimension.  相似文献   

11.
This work presents a comparative evaluation of several detergent‐based sample preparation workflows for the MS‐based analysis of bacterial proteomes, performed using the model organism Escherichia coli. Initially, RapiGest‐ and SDS‐based buffers were compared for their protein extraction efficiency and quality of the MS data generated. As a result, SDS performed best in terms of total protein yields and overall number of MS identifications, mainly due to a higher efficiency in extracting high molecular weight (MW) and membrane proteins, while RapiGest led to an enrichment in periplasmic and fimbrial proteins. Then, SDS extracts underwent five different MS sample preparation workflows, including: detergent removal by spin columns followed by in‐solution digestion (SC), protein precipitation followed by in‐solution digestion in ammonium bicarbonate or urea buffer, filter‐aided sample preparation (FASP), and 1DE separation followed by in‐gel digestion. On the whole, about 1000 proteins were identified upon LC‐MS/MS analysis of all preparations (>1100 with the SC workflow), with FASP producing more identified peptides and a higher mean sequence coverage. Each protocol exhibited specific behaviors in terms of MW, hydrophobicity, and subcellular localization distribution of the identified proteins; a comparative assessment of the different outputs is presented.  相似文献   

12.
A proteomic approach was used to uncover the inducible molecular defense mechanism of cotton root occurring during the compatible interaction with Thielaviopsis basicola. Microscopic observation of cotton root inoculated with a suspension of conidia showed that this necrotrophic hemibiotroph fungus interacts with the plant and completes its life cycle in our experimental system. 2‐DE analysis of root extracts taken after 1, 3, 5, and 7 days postinoculation and cluster analysis of the protein expression levels showed four major profiles (constant, upregulated, one slightly downregulated, and one dramatically downregulated). Spots significantly (p<0.05) upregulated were analyzed by LC‐MS/MS and identified using MASCOT MS/MS ion search software and associated databases. These proteins included defense and stress related proteins, such as pathogenesis‐related proteins and proteins likely to be involved in the oxidative burst, sugar, and nitrogen metabolism as well as amino acid and isoprenoid synthesis. While many of the identified proteins are common components of the defense response of most plants, a proteasome subunit and a protein reported to be induced only in cotton root following Meloidogyne incognita infection were also identified.  相似文献   

13.
An emerging approach for multiplexed targeted proteomics involves bottom‐up LC‐MRM‐MS, with stable isotope‐labeled internal standard peptides, to accurately quantitate panels of putative disease biomarkers in biofluids. In this paper, we used this approach to quantitate 27 candidate cancer‐biomarker proteins in human plasma that had not been treated by immunoaffinity depletion or enrichment techniques. These proteins have been reported as biomarkers for a variety of human cancers, from laryngeal to ovarian, with breast cancer having the highest correlation. We implemented measures to minimize the analytical variability, improve the quantitative accuracy, and increase the feasibility and applicability of this MRM‐based method. We have demonstrated excellent retention time reproducibility (median interday CV: 0.08%) and signal stability (median interday CV: 4.5% for the analytical platform and 6.1% for the bottom‐up workflow) for the 27 biomarker proteins (represented by 57 interference‐free peptides). The linear dynamic range for the MRM assays spanned four orders‐of‐magnitude, with 25 assays covering a 103–104 range in protein concentration. The lowest abundance quantifiable protein in our biomarker panel was insulin‐like growth factor 1 (calculated concentration: 127 ng/mL). Overall, the analytical performance of this assay demonstrates high robustness and sensitivity, and provides the necessary throughput and multiplexing capabilities required to verify and validate cancer‐associated protein biomarker panels in human plasma, prior to clinical use.  相似文献   

14.
Quantitation in plasma‐based proteomics necessitates the reproducible removal of highly abundant proteins to enable the less abundant proteins to be visible to the mass spectrometer. We have evaluated immunodepletion (proteoprep20) and enrichment (Bio‐Rad beads), as the current predominant approaches. Label‐free analysis offers an opportunity to estimate the effectiveness of this approach without incorporating chemical labels. Human plasma samples were used to quantitatively assess the reproducibility of these two methods using nano‐LC‐data‐independent acquisition MS. We have selected 18 candidate proteins and a comparison of both methodologies showed that both of the methods were reproducible and fell below 20% residual SD. With the same candidate proteins, individual inter‐day variability for the samples was also processed, allowing us to monitor instrument reproducibility. Overall, a total of 131 proteins were identified by both methods with 272 proteins identified by enrichment and 200 identified by immunodepletion. Reproducibility of measurements of the amount of protein in the processed sample for individual proteins is within analytically acceptable standards for both methodologies. This enables both methods to be used for biomarker studies. However, when sample is limited, enrichment is not suitable as larger volumes (>1.0 mL) are required. In experiments where sample is not limited then a greater number of proteins can be reliably identified using enrichment.  相似文献   

15.
YidC of Escherichia coli belongs to the evolutionarily conserved Oxa1/Alb3/YidC family. Members of the family have all been implicated in membrane protein biogenesis of respiratory and energy transducing proteins. The number of proteins identified thus far to require YidC for their membrane biogenesis remains limited and the identification of new substrates may allow the elucidation of properties that define the YidC specificity. To this end we investigated changes in the membrane proteome of E. coli upon YidC depletion using metabolic labeling of proteins with 15N/14N combined with a MS‐centered proteomics approach and compared the effects of YidC depletion under aerobic and anaerobic growth conditions. We found that YidC depletion resulted in protein aggregation/misfolding in the cytoplasm as well as in the inner membrane of E. coli. A dramatic increase was observed in the chaperone‐mediated stress response upon YidC depletion and this response was limited to aerobically grown cells. A number of transporter proteins were identified as possible candidates for the YidC‐dependent insertion and/or folding pathway. These included the small metal ion transporter CorA, numerous ABC transporters, as well as the MFS transporters KgtP and ProP, providing a new subset of proteins potentially requiring YidC for membrane biogenesis.  相似文献   

16.
Osmotic stress-related proteins in sugarcane were identified using proteomics approach based on two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). Sugarcane settlings were subjected to osmotic stress in the nutrient solution containing 10% (w/v) PEG 6000 for 14 h. Total proteins were extracted from leaves, and separated by 2-DE. Four typical spots exhibited significant changes in PEG treatment compared to control, which were identified using MALDI-TOF-MS successfully. The drought inducible 22 kDa protein and Rubisco small subunit were up-regulated while isoflavone reductase-like (IRLs, related to antioxidant defense system) protein and delta chain of ATP synthase were down-regulated by the osmotic stress. Analysis of the results showed that the most differential proteins under osmotic stress were acidic, unstable and transmembrane proteins, enriched with hydrophobic amino acids such as leucine and alanine which are extremely important for structural stabilization of proteins by hydrophobic interaction. However, the drought inducible 22 kDa protein was a hydrophile and non-transmembrane protein enriched with glutamic acid. These results provide new insight into the part of regulatory mechanism of adaptations to osmotic stress through differential expression of specific proteins and implicate several previously unrecognized proteins to osmotic stress.  相似文献   

17.
《Biomarkers》2013,18(4):352-361
Objective: To identify plasma protein biomarkers of cervical high-grade squamous intraepithelial lesion (HSIL) of Uyghur women by proteomics approach.

Methods: Plasma protein samples of Uyghur women with HSIL and chronic cervicitis were analyzed with 2D HPLC followed by detection of target proteins with Linear Trap Quadrupole Mass Spectrometer (LTQ MS/MS).

Results: We detected three upregulated and one downregulated protein peaks representing protein constituents distinguishing HSIL from controls by 2D HPLC, identified 31 target proteins by LTQ MS/MS. Further confirmed analysis with online software IPA® 8.7 and ELISA assay showed APOA1 and mTOR as potential biomarkers.

Conclusions: A distinct plasma proteomic profile may be associated with HSIL of Uyghur women.  相似文献   

18.
Membrane proteins play key roles in several fundamental biological processes such as cell signalling, energy metabolism and transport. Despite the significance, these still remain an under‐represented group in proteomics datasets. Herein, a bottom‐up approach to analyse an enriched membrane fraction from Drosophila melanogaster heads using multidimensional liquid chromatography (LC) coupled with tandem‐mass spectrometry (MS/MS) that relies on complete solubilisation and digestion of proteins, is reported. An enriched membrane fraction was prepared using equilibrium density centrifugation on a discontinuous sucrose gradient, followed by solubilisation using the filter‐aided sample preparation (FASP), tryptic and sequential chymotryptic digestion of proteins. Peptides were separated by reversed‐phase (RP) LC at high pH in the first dimension and acidic RP‐LC in the second dimension coupled directly to an Orbitrap Velos Pro mass spectrometer. A total number of 4812 proteins from 114 865 redundant and 38 179 distinct peptides corresponding to 4559 genes were identified in the enriched membrane fraction from fly heads. These included brain receptors, transporters and channels that are most important elements as drug targets or are linked to disease. Data are available via ProteomeXchange with identifier PXD001712 ( http://proteomecentral.proteomexchange.org/dataset/PXD001712 ).  相似文献   

19.
Protein expression of Lactobacillus brevis NCL912 under acid stress was analysed by two-dimensional gel electrophoresis and MS. Twenty-five proteins were differentially expressed under acid stress. Among them, eight protein spots were identified by matrix-assisted laser desorption/ionization time-of-flight MS, of which seven were upregulated and one was downregulated. The function of the downregulated protein was unknown and the putative functions of the upregulated proteins were categorized as stress response, DNA repair, protein synthesis and glycolysis. Quantitative real-time PCR was used to further validate these differentially expressed proteins at the mRNA level and a positive correlation between the content of the proteins and their mRNA levels was found. The results suggest that these proteins are involved in the acid stress response mechanisms of this bacterium.  相似文献   

20.
Xin Chen  Ying Ge 《Proteomics》2013,13(17):2563-2566
Top‐down MS‐based proteomics has gained a solid growth over the past few years but still faces significant challenges in the LC separation of intact proteins. In top‐down proteomics, it is essential to separate the high mass proteins from the low mass species due to the exponential decay in S/N as a function of increasing molecular mass. SEC is a favored LC method for size‐based separation of proteins but suffers from notoriously low resolution and detrimental dilution. Herein, we reported the use of ultrahigh pressure (UHP) SEC for rapid and high‐resolution separation of intact proteins for top‐down proteomics. Fast separation of intact proteins (6–669 kDa) was achieved in < 7 min with high resolution and high efficiency. More importantly, we have shown that this UHP‐SEC provides high‐resolution separation of intact proteins using a MS‐friendly volatile solvent system, allowing the direct top‐down MS analysis of SEC‐eluted proteins without an additional desalting step. Taken together, we have demonstrated that UHP‐SEC is an attractive LC strategy for the size separation of proteins with great potential for top‐down proteomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号