首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
TREM2 in Alzheimer’s disease   总被引:1,自引:0,他引:1  
Recent works have demonstrated a rare functional variant (R47H) in triggering receptor expressed on myeloid cells (TREM) 2 gene, encoding TREM2 protein, increase susceptibility to late-onset Alzheimer’s disease (AD), with an odds ratio similar to that of the apolipoprotein E ε4 allele. The reduced function of TREM2 was speculated to be the main cause in the pathogenic effects of this risk variant, and TREM2 is highly expressed in white matter, as well as in the hippocampus and neocortex, which is partly consistent with the pathological features reported in AD brain, indicating the possible involvement of TREM2 in AD pathogenesis. Emerging evidence has demonstrated that TREM2 could suppress inflammatory response by repression of microglia-mediated cytokine production and secretion, which may prevent inflammation-induced bystander damage of neurons. TREM2 also participates in the regulation of phagocytic pathways that are responsible for the removal of neuronal debris. In this article, we review the recent epidemiological findings of TREM2 that related with late-onset AD and speculate the possible roles of TREM2 in progression of this disease. Based on the potential protective actions of TREM2 in AD pathogenesis, targeting TREM2 might provide new opportunities for AD treatment.  相似文献   

3.
Chasing genes in Alzheimer’s and Parkinson’s disease   总被引:4,自引:0,他引:4  
Alzheimers disease (AD), the most common type of dementia, and Parkinsons disease (PD), the most common movement disorder, are both neurodegenerative adult-onset diseases characterized by the progressive loss of specific neuronal populations and the accumulation of intraneuronal inclusions. The search for genetic and environmental factors that determine the fate of neurons during the ageing process has been a widespread approach in the battle against neurodegenerative disorders. Genetic studies of AD and PD initially focused on the search for genes involved in the aetiological mechanisms of monogenic forms of these diseases. They later expanded to study hundreds of patients, affected relative-pairs and population-based studies, sometimes performed on special isolated populations. A growing number of genes (and pathogenic mutations) is being identified that cause or increase susceptibility to AD and PD. This review discusses the way in which strategies of gene hunting have evolved during the last few years and the significance of finding genes such as the presenilins, -synuclein, parkin and DJ-1. In addition, we discuss possible links between these two neurodegenerative disorders. The clinical, pathological and genetic presentation of AD and PD suggests the involvement of a few overlapping interrelated pathways. Their imbricate features point to a spectrum of neurodegeneration (tauopathies, synucleinopathies, amyloidopathies) that need further intense investigation to find the missing links.  相似文献   

4.
Purinergic Signalling - Alzheimer’s disease (AD) is the most common dementia in the elderly and its increasing prevalence presents treatment challenges. Despite a better understanding of the...  相似文献   

5.
Molecular Biology Reports - Estrogens are hormones that play a critical role during development and growth for the adequate functioning of the reproductive system of women, as well as for...  相似文献   

6.
Alzheimer’s disease (AD) is a chronic neurodegenerative disease categorized by the deficiency in the cognition and memory. Approximately 50 million peoples has the AD, which is categorized by the deficiency in the cognition, memory and other kinds of cognitive dissention. The present exploration was designed to unveil the ameliorative properties of ononin against the aluminium chloride (AlCl3)-provoked AD in animals via the suppression of oxidative stress and neuroinflammation. AD was provoked to the Sprague Dawley rats through administering orally with 0.5 ml/100 g b.wt. of AlCl3 25 days and then supplemented with the 30 mg/kg of ononin orally for 25th day to 36th day. The behavioural changes were examined using open field and Morris Water Maze test. The acetylcholine esterase (AChE) activity was studied by standard method. The status of Aβ1-42, MDA, SOD, total antioxidant capacity (TAC) were quantified using respective assay kits. The interleukin(IL)-1β and TNF-α, BDNF, PPAR-γ, p38MAPK, and NF-κB/p65 status was quantified using respective assay kits. Brain histology was studied using microscope. The ononin treatment effectively modulated the AlCl3-triggered behavioural alterations in the AD animals. Ononin appreciably suppressed the AChE, Aβ1-42, and MDA and improved the SOD and TAC in the brain tissues of AD animals. The status of IL-1β, TNF-α, p38MAPK, and NF-κB were suppressed and the BDNF and PPAR-γ contents were elevated in the brain tissues of AD animals. The outcomes brain histology analysis proved the attenuate role of ononin. Our findings recommended that the ononin treatment could ameliorate the cognitive impairment, suppress the neuroinflammation and oxidative stress in the AD animals.  相似文献   

7.
The β-amyloid (Aβ) peptide has been postulated to be a key determinant in the pathogenesis of Alzheimer’s disease (AD). Aβ is produced through sequential cleavage of the β-amyloid precursor protein (APP) by β- and γ-secretases. APP and relevant secretases are transmembrane proteins and traffic through the secretory pathway in a highly regulated fashion. Perturbation of their intracellular trafficking may affect dynamic interactions among these proteins, thus altering Aβ generation and accelerating disease pathogenesis. Herein, we review recent progress elucidating the regulation of intracellular trafficking of these essential protein components in AD.  相似文献   

8.
9.
Various innovative diagnostic methods for Alzheimer’s disease (AD) have been developed in view of the increasing preva-lence and consequences of later-life dementia. Biomarkers in cerebrospinal fluid (CSF) and blood for AD are primarily based on the detection of components derived from amyloid plaques and neurofibrillary tangles (NFTs). Published reports on CSF and blood biomarkers in AD indicate that although biomarkers in body fluids may be utilized in the clinical diagnosis of AD, there are no specific markers that permit accurate and reliable diagnosis of early-stage AD or the monitoring of disease pro-gression.  相似文献   

10.
11.
The aging process correlates with a progressive failure in the normal cellular and organ functioning; these alterations are aggravated in Alzheimer’s disease (AD). In both aging and AD there is a general decrease in the capacity of the body to eliminate toxic compounds and, simultaneously, to supply the brain with relevant growth and nutritional factors. The barriers of the brain are targets of this age related dysfunction; both the endothelial cells of the blood–brain barrier and the choroid plexus epithelial cells of the blood-cerebrospinal fluid barrier decrease their secretory capacity towards the brain and their ability to remove toxic compounds from the brain. Additionally, during normal aging and in AD, the permeability of the brain barriers increase. As such, a greater contact of the brain parenchyma with the blood content alters the highly controlled neural environment, which impacts on neural function. Of interest, the brain barriers are more than mere obstacles to the passage of molecules and cells, and therefore active players in brain homeostasis, which is still to be further recognized and investigated in the context of health and disease. Herein, we provide a review on how the brain barriers change during aging and in AD and how these processes impact on brain function.  相似文献   

12.
Ionic and signal transduction alterations in Alzheimer’s disease   总被引:2,自引:0,他引:2  
Several lines of, evidence indicate that Alzheimer’s disease (AD) has systemic expression. Systemic changes are manifested as alterations in a number of molecular and cellular processes. Although, these alterations appear to have little or no consequence in peripheral systems, their parallel expression in the central nervous system (CNS) could account for the principal clinical manifestations of the disease. Recent research seems to indicate that alterations in ion channels, calcium homeostasis, and protein kinase C (PKC) can be linked and thereby constitute a model of pathophysiological relevance. Considering the difficulties of studying dynamic pathophysiological processes in the disease-ridden postmortem AD brain, peripheral tissues such as fibroblasts provide a suitable model to study molecular and cellular aspects of the disease.  相似文献   

13.
Alzheimer’s disease (AD) represents an urgent public health mandate. AD is no longer considered a neural-centric disease; rather, a plethora of recent studies strongly implicate a critical role played by neuroinflammation in the pathogeneses of AD and other neurodegenerative conditions. A close functional connection between the immune system and central nervous system is increasingly recognized. In late-onset AD, aging represents the most significant risk factor. Here, from an immunological perspective, we summarize the prominent molecular and cellular changes in the periphery of aging individuals and AD patients. Moreover, we review the knowledge gained in the past several years that implicate specific arms of the peripheral immune system and other types of immune responses in modulating AD progression. Taken together, these findings collectively emphasize a dynamic role of a concert of brain-extrinsic, peripheral signals in the aging and degenerative processes in the CNS. We believe that a systematic view synthesizing the vast amounts of existing results will help guide the development of next-generation therapeutics and inform future directions of AD investigation.  相似文献   

14.
Alzheimer’s disease (AD) is a heterogeneous disorder with multiple patterns of clinical manifestations. Recently, due to the advance of linkage studies, next-generation sequencing and genome-wide association studies, a large number of putative risk genes for AD have been identified using acquired genome mega data. The genetic association between three causal genes, including amyloid precursor protein, presenilin1, and presenilin2 in early-onset AD (EOAD), was discovered over the past few decades. These discoveries showed that there should be additional genetic risk factors for both EOAD and late-onset AD (LOAD) to help fully explain the leading molecular mechanisms in a single pathophysiological entity. This study reviews the clinical features and genetic etiology of LOAD and discusses a variety of AD-mediated genes that are involved in cholesterol and lipid metabolism, endocytosis, and immune response according to their mutations for more efficient selection of functional candidate genes for LOAD. New mechanisms and pathways have been identified as a result.  相似文献   

15.
16.
Autophagy is a major protein degradation pathway that is essential for stress-induced and constitutive protein turnover. Accumulated evidence has demonstrated that amyloid-beta (A beta) protein can be generated in autophagic vacuoles, promoting its extracellular deposition in neuritic plaques as the pathological hallmark of Alzheimer's disease (AD). The molecular machinery for A beta generation, including APP, APP-C99 and beta-/gamma-secretases, are all enriched in autophagic vacuoles. The induction of autophagy can be vividly observed in the brain at early stages of sporadic AD and in an AD transgenic mouse model. Accumulated evidence has also demonstrated a neuroprotective role of autophagy in mediating the degradation of aggregated proteins that are causative of various neurodegenerative diseases. Autophagy is thus widely regarded as an intracellular hub for the removal of the detrimental A beta peptides and Tau aggregates. Nonetheless, compelling data also reveal an unfavorable function of autophagy in facilitating the production of intracellular A beta. The two faces of autophagy on the homeostasis of A beta place it in a very unique and intriguing position in AD pathogenesis. This article briefly summarizes seminal discoveries that are shedding new light on the critical and unique roles of autophagy in AD and potential therapeutic approaches against autophagy-elicited AD.  相似文献   

17.
Angiotensin-converting enzyme (ACE) has been reported to show altered activity in patients with neurological diseases. The recent studies found that a 287 bp insertion/deletion (I/D) polymorphism of the ACE gene may be associated with susceptibility to Alzheimer’s disease (AD) but the results have been heterogenous between studies in Europe. In the present study we examined for the first time the association of ACE I/D polymorphism along with APOE genotype in 70 sporadic AD and 126 control subjects in Slovak Caucasians (Central Europe). An increased risk for AD was observed in subjects with at least one APOE*E4 allele (OR=3.99, 95% CI=1.97–8.08). No significant differences for the genotype distribution or the allele frequency were revealed comparing controls and patients for ACE gene. Gene-gene interaction analysis showed increase of the risk to develop AD in subjects carrying both the ACE DD genotype and the APOE*E4 allele (OR=10.32, 95% C.I. 2.67–39.81).  相似文献   

18.
19.
Deposits of amyloid peptide Aβ and intracellular aggregates of hyperphosphorylated tau protein in the brain of patients are major neuropathological features of Alzheimer’s disease (AD). For a long time, the possibility of horizontal transmission of Aβ aggregates from cell to cell and from person to person remained hypothetical, since there was no experimental evidence. However, in 1993, the formation of senile plaques was confirmed in the brains of animals after intracerebral injections of AD patient brain homogenates. or homogenates of the brain of transgenic mice enriched with Aβ aggregates Other experiments indicate that amyloid peptide Aβ and intracellular aggregates of hyperphosphorylated tau protein may be transferred from cell to cell like prions. In 2015 and 2016, it was reported that AD could be transmitted to humans during medical procedures, i.e., that this disease might be iatrogenic. This review discusses the mechanisms by which pathogenic Aβ protein can be transmitted between cells and analyzes the current evidence concerning the possibility of horizontal Aβ transmission from person to person.  相似文献   

20.
Etiology of the Alzheimer’s disease (AD) is not fully understood. Different pathological processes are considered, such as amyloid deposition, tau protein phosphorylation, oxidative stress (OS), metal ion disregulation, or chronic neuroinflammation. Purinergic signaling is involved in all these processes, suggesting the importance of nucleotide receptors (P2X and P2Y) and adenosine receptors (A1, A2A, A2B, A3) present on the CNS cells. Ecto-purines, ecto-pyrimidines, and enzymes participating in their metabolism are present in the inter-cellular spaces. Accumulation of amyloid-β (Aβ) in brain induces the ATP release into the extra-cellular space, which in turn stimulates the P2X7 receptors. Activation of P2X7 results in the increased synthesis and release of many pro-inflammatory mediators such as cytokines and chemokines. Furthermore, activation of P2X7 leads to the decreased activity of α-secretase, while activation of P2Y2 receptor has an opposite effect. Simultaneous inhibition of P2X7 and stimulation of P2Y2 would therefore be the efficient way of the α-secretase activation. Activation of P2Y2 receptors present in neurons, glia cells, and endothelial cells may have a positive neuroprotective effect in AD. The OS may also be counteracted via the purinergic signaling. ADP and its non-hydrolysable analogs activate P2Y13 receptors, leading to the increased activity of heme oxygenase, which has a cytoprotective activity. Adenosine, via A1 and A2A receptors, affects the dopaminergic and glutaminergic signaling, the brain-derived neurotrophic factor (BNDF), and also changes the synaptic plasticity (e.g., causing a prolonged excitation or inhibition) in brain regions responsible for learning and memory. Such activity may be advantageous in the Alzheimer’s disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号