首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Low‐yield protein production remains the most significant economic hurdle with plant cell culture technology. Fusions of recombinant proteins with hydroxyproline‐O‐glycosylated designer glycopeptide tags have consistently boosted secreted protein yields. This prompted us to study the process development of this technology aiming to achieve productivity levels necessary for commercial viability. We used a tobacco BY‐2 cell culture expressing EGFP as fusion with a glycopeptide tag comprised of 32 repeat of ”Ser‐Pro“ dipeptide, or (SP)32, to study cell growth and protein secretion, culture scale‐up, and establishment of perfusion cultures for continuous production. The BY‐2 cells accumulated low levels of cell biomass (~7.5 g DW/L) in Schenk & Hildebrandt medium, but secreted high yields of (SP)32‐tagged EGFP (125 mg/L). Protein productivity of the cell culture has been stable for 6.0 years. The BY‐2 cells cultured in a 5‐L bioreactor similarly produced high secreted protein yield at 131 mg/L. Successful operation of a cell perfusion culture for 30 days was achieved under the perfusion rate of 0.25 and 0.5 day?1, generating a protein volumetric productivity of 17.6 and 28.9 mg/day/L, respectively. This research demonstrates the great potential of the designer glycopeptide technology for use in commercial production of valuable proteins with plant cell cultures.  相似文献   

3.
3Z‐3‐[(1H‐pyrrol‐2‐yl)‐methylidene]‐1‐(1‐piperidinylmethyl)‐1,3‐2H‐indol‐2‐one (Z24), a synthetic anti‐angiogenic compound, inhibits the growth and metastasis of certain tumors. Previous works have shown that Z24 induces hepatotoxicity in rodents. We examined the hepatotoxic mechanism of Z24 at the protein level and looked for potential biomarkers. We used 2‐DE and MALDI‐TOF/TOF MS to analyze alternatively expressed proteins in rat liver and plasma after Z24 administration. We also examined apoptosis in rat liver and measured levels of intramitochondrial ROS and NAD(P)H redox in liver cells. We found that 22 nonredundant proteins in the liver and 11 in the plasma were differentially expressed. These proteins were involved in several important metabolic pathways, including carbohydrate, lipid, amino acid, and energy metabolism, biotransformation, apoptosis, etc. Apoptosis in rat liver was confirmed with the terminal deoxynucleotidyl transferase dUTP‐nick end labeling assay. In mitochondria, Z24 increased the ROS and decreased the NAD(P)H levels. Thus, inhibition of carbohydrate aerobic oxidation, fatty acid β‐oxidation, and oxidative phosphorylation is a potential mechanism of Z24‐induced hepatotoxicity, resulting in mitochondrial dysfunction and apoptosis‐mediated cell death. In addition, fetub protein and argininosuccinate synthase in plasma may be potential biomarkers of Z24‐induced hepatotoxicity.  相似文献   

4.
Plant‐produced glycoproteins contain N‐linked glycans with plant‐specific residues of β(1,2)‐xylose and core α(1,3)‐fucose, which do not exist in mammalian‐derived proteins. Although our experience with two enzymes that are used for enzyme replacement therapy does not indicate that the plant sugar residues have deleterious effects, we made a conscious decision to eliminate these moieties from plant‐expressed proteins. We knocked out the β(1,2)‐xylosyltranferase (XylT) and the α(1,3)‐fucosyltransferase (FucT) genes, using CRISPR/Cas9 genome editing, in Nicotiana tabacum L. cv Bright Yellow 2 (BY2) cell suspension. In total, we knocked out 14 loci. The knocked‐out lines were stable, viable and exhibited a typical BY2 growing rate. Glycan analysis of the endogenous proteins of these lines exhibited N‐linked glycans lacking β(1,2)‐xylose and/or α(1,3)‐fucose. The knocked‐out lines were further transformed successfully with recombinant DNaseI. The expression level and the activity of the recombinant protein were similar to that of the protein produced in the wild‐type BY2 cells. The recombinant DNaseI was shown to be totally free from any xylose and/or fucose residues. The glyco‐engineered BY2 lines provide a valuable platform for producing potent biopharmaceutical products. Furthermore, these results demonstrate the power of the CRISPR/Cas9 technology for multiplex gene editing in BY2 cells.  相似文献   

5.
Jinshan Li  Wei Wang  Yi Wang  An‐Ping Zeng 《Proteomics》2013,13(23-24):3470-3477
Streptococcus mutans is considered to be the most cariogenic organism. Carolacton, isolated from the myxobacterium Sorangium cellulosum, shows the ability to disturb S. mutans biofilm viability that makes it a potential anti‐biofilm drug. However, the molecular mechanism of carolacton remains to be elucidated. In order to use proteomics to characterize the effect of carolacton, we constructed a 2DE‐based proteome reference map of the cytoplasmic and extracellular proteins for S. mutans in the present study. In total, 239 protein spots representing 192 different cytoplasmic proteins were identified by MALDI‐TOF MS and PMF. This represents the highest number of identified proteins so far for S. mutans UA159 in the pI range of 4–7 and would benefit further research on the physiology and pathogenicity of this strain. Based on the constructed reference map, the inhibitory effects of carolacton on S. mutans biofilm and planktonic‐growing cells were investigated. The results of the comparative proteome analysis indicate that carolacton exerts its inhibitory effects by disturbing the peptidoglycan biosynthesis and degradation and thereby causes damages to the integrity of the cell envelope, leading ultimately to cell death.  相似文献   

6.
We describe a SELDI‐TOF MS procedure for the rapid detection and quantitation of low‐molecular‐weight recombinant proteins expressed in plants. Transgenic lines of potato (Solanum tuberosum L.) expressing the clinically useful protein bovine aprotinin or the cysteine protease inhibitor corn cystatin II were generated by Agrobacterium tumefaciens‐mediated transformation, and then used as test material for the analyses. Real‐time RT‐PCR amplifications and detection of the recombinant proteins by immunoblotting were first conducted for transformed potato lines accumulating the proteins in different cell compartments. Both proteins were found at varying levels in leaves, depending on their final cellular destination and transgene expression rate. These conclusions drawn from standard immunodetection assays were easily confirmed by SELDI‐TOF MS comparative profiling, after immobilizing the leaf proteins of control and transformed lines on protein biochips for weak cationic exchange. This procedure, carried out in less than 2 h, allows for the rapid comparison of recombinant protein levels in transgenic plant lines. The molecular weight of immobilized proteins can also be determined directly from the MS spectra, thus providing a simple way to assess the structural integrity and homogeneity of recombinant proteins in planta, and to identify the most suitable cellular compartments for their heterologous production.  相似文献   

7.
Quantitative proteomics based on isotopic labeling has become the method of choice to accurately determine changes in protein abundance in highly complex mixtures. Isotope‐coded protein labeling (ICPL), which is based on the nicotinoylation of proteins at lysine residues and free N‐termini was used as a simple, reliable and fast method for the comparative analysis of three different cellular states of the halophilic archaeon Halobacterium salinarum through pairwise comparison. The labeled proteins were subjected to SDS‐PAGE, in‐gel digested and the proteolytic peptides were separated by LC and analyzed by MALDI‐TOF/TOF MS. Automated quantitation was performed by comparing the MS peptide signals of 12C and 13C nicotinoylated isotopic peptide pairs. The transitions between (i) aerobic growth in complex versus synthetic medium and (ii) aerobic versus anaerobic/phototrophic growth, both in complex medium, provide a wide span in nutrient and energy supply for the cell and thus allowed optimal studies of proteome changes. In these two studies, 559 and 643 proteins, respectively, could be quantified allowing a detailed analysis of the adaptation of H. salinarum to changes of its living conditions. The subtle cellular response to a wide variation of nutrient and energy supply demonstrates a fine tuning of the cellular protein inventory.  相似文献   

8.
Non‐heading Chinese cabbage (Brassica campestris L. ssp. chinensis Makino), an important vegetable crop in China, exhibits a typical sporophytic self‐incompatibility (SI) system. To better understand the mechanism of SI response and identify potential candidate proteins involved in the SI system of this vegetable crop, the proteomic approach was taken to identify differential accumulating pistil proteins. Pistils were collected at 0 h and 2 h after self‐pollination at anthesis in self‐incompatible and compatible lines of non‐heading Chinese cabbage, and total proteins were extracted and separated by two‐dimensional gel electrophoresis (2‐DE). A total of 25 protein spots that displayed differential abundance were identified by matrix‐assisted laser desorption/ionisation‐time of flight mass spectrometry (MALDI–TOF/TOF MS) and peptide mass fingerprinting (PMF). Among them, 22 protein spots were confidently established. The mRNA levels of the corresponding genes were detected by quantitative RT‐PCR. The 22 identified protein spots are involved in energy metabolism (four), protein biosynthesis (three), photosynthesis (six), stress response and defence (five), and protein degradation (four). Among these potential candidate proteins, UDP‐sugar pyrophosphorylase could be involved in sucrose degradation to influence pollen germination and growth. Glutathione S–transferases could be involved in pollen maturation, and affect pollen fertility. Senescence‐associated cysteine protease, which is related to programmed cell death, could be mainly related to self pollen recognition of non‐heading Chinese cabbage. The study will contribute to further investigations of molecular mechanism of sporophytic SI in Brassicaceae.  相似文献   

9.
A proteome reference map containing 326 2‐D gel spots representing 275 different proteins was constructed for the plant growth‐promoting bacterium Pseudomonas putida UW4. Protein identifications were obtained using Q‐TOF MS/MS spectra matching to homologous proteins from other Pseudomonas strains and confirmed by PMF analysis. This data set is accessible at http://world‐2dpage.expasy.org/repository/ and will aid in further characterization of Pseudomonas strains and interactions of plant growth‐promoting bacterium with the plant rhizosphere environment.  相似文献   

10.
Botrytis cinerea is a phytopathogenic fungus infecting a number of crops (tomatoes, grapes and strawberries), which has been adopted as a model system in molecular phytopathology. B. cinerea uses a wide variety of infection strategies, which are mediated by a set of genes/proteins called pathogenicity/virulence factors. Many of these factors have been described as secreted proteins, and thus the study of this sub‐proteome, the secretome, under changing circumstances can help us to understand the roles of these factors, possibly revealing new loci for the fight against the pathogen. A 2‐DE, MALDI TOF/TOF‐based approach has been developed to establish the proteins secreted to culture media supplemented with different carbon sources and plant‐based elicitors (in this study: glucose, cellulose, starch, pectin and tomato cell walls). Secreted proteins were obtained from the culture media by deoxycholate‐trichloroacetic acid/phenol extraction, and 76 spots were identified, yielding 95 positive hits that correspond to 56 unique proteins, including several known virulence factors (i.e. pectin methyl esterases, xylanases and proteases). The observed increases in secretion of proteins with established virulence‐related functions indicate that this in vitro‐induction/proteome‐mining approach is a promising strategy for discovering new pathogenicity factors and dissecting infection mechanisms in a discrete fashion.  相似文献   

11.
In plants, 3‐deoxy‐d ‐manno‐oct‐2‐ulosonic acid (Kdo) is a monosaccharide that is only found in the cell wall pectin, rhamnogalacturonan‐II (RG‐II). Incubation of 4‐day‐old light‐grown Arabidopsis seedlings or tobacco BY‐2 cells with 8‐azido 8‐deoxy Kdo (Kdo‐N3) followed by coupling to an alkyne‐containing fluorescent probe resulted in the specific in muro labelling of RG‐II through a copper‐catalysed azide–alkyne cycloaddition reaction. CMP‐Kdo synthetase inhibition and competition assays showing that Kdo and D‐Ara, a precursor of Kdo, but not L‐Ara, inhibit incorporation of Kdo‐N3 demonstrated that incorporation of Kdo‐N3 occurs in RG‐II through the endogenous biosynthetic machinery of the cell. Co‐localisation of Kdo‐N3 labelling with the cellulose‐binding dye calcofluor white demonstrated that RG‐II exists throughout the primary cell wall. Additionally, after incubating plants with Kdo‐N3 and an alkynated derivative of L‐fucose that incorporates into rhamnogalacturonan I, co‐localised fluorescence was observed in the cell wall in the elongation zone of the root. Finally, pulse labelling experiments demonstrated that metabolic click‐mediated labelling with Kdo‐N3 provides an efficient method to study the synthesis and redistribution of RG‐II during root growth.  相似文献   

12.
Plant suspension cell cultures are emerging as an alternative to mammalian cells for production of complex recombinant proteins. Plant cell cultures provide low production cost, intrinsic safety and adherence to current regulations, but low yields and costly purification technology hinder their commercialization. Fungal hydrophobins have been utilized as fusion tags to improve yields and facilitate efficient low‐cost purification by surfactant‐based aqueous two‐phase separation (ATPS) in plant, fungal and insect cells. In this work, we report the utilization of hydrophobin fusion technology in tobacco bright yellow 2 (BY‐2) suspension cell platform and the establishment of pilot‐scale propagation and downstream processing including first‐step purification by ATPS. Green fluorescent protein‐hydrophobin fusion (GFP‐HFBI) induced the formation of protein bodies in tobacco suspension cells, thus encapsulating the fusion protein into discrete compartments. Cultivation of the BY‐2 suspension cells was scaled up in standard stirred tank bioreactors up to 600 L production volume, with no apparent change in growth kinetics. Subsequently, ATPS was applied to selectively capture the GFP‐HFBI product from crude cell lysate, resulting in threefold concentration, good purity and up to 60% recovery. The ATPS was scaled up to 20 L volume, without loss off efficiency. This study provides the first proof of concept for large‐scale hydrophobin‐assisted production of recombinant proteins in tobacco BY‐2 cell suspensions.  相似文献   

13.
Tetralogy of Fallot (TOF) is a complex congenital heart defect and the microRNAs regulation in TOF development is largely unknown. Herein, we explored the role of miRNAs in TOF. Among 75 dysregulated miRNAs identified from human heart tissues, miRNA‐940 was the most down‐regulated one. Interestingly, miRNA‐940 was most highly expressed in normal human right ventricular out‐flow tract comparing to other heart chambers. As TOF is caused by altered proliferation, migration and/or differentiation of the progenitor cells of the secondary heart field, we isolated Sca‐1+ human cardiomyocyte progenitor cells (hCMPC) for miRNA‐940 function analysis. miRNA‐940 reduction significantly promoted hCMPCs proliferation and inhibited hCMPCs migration. We found that JARID2 is an endogenous target regulated by miRNA‐940. Functional analyses showed that JARID2 also affected hCMPCs proliferation and migration. Thus, decreased miRNA‐940 affects the proliferation and migration of the progenitor cells of the secondary heart field by targeting JARID2 and potentially leads to TOF development.  相似文献   

14.
The filamentous fungus Aspergillus fumigatus has become the most important airborne fungal pathogen causing life‐threatening infections in immunosuppressed patients. We established a 2‐D reference map for A. fumigatus. Using MALDI‐TOF‐MS/MS, we identified 381 spots representing 334 proteins. Proteins involved in cellular metabolism, protein synthesis, transport processes and cell cycle were most abundant. Furthermore, we established a protocol for the isolation of mitochondria of A. fumigatus and developed a mitochondrial proteome reference map. 147 proteins represented by 234 spots were identified.  相似文献   

15.
F‐box proteins function in the recruitment of proteins for SCF ubiquitination and proteasome degradation. Here, we studied the role of Fbp1, a nonessential F‐box protein of the tomato pathogen Fusarium oxysporum f. sp. lycopersici. The Δfbp1 mutant showed a significant delay in the production of wilt symptoms on tomato plants and was impaired in invasive growth on cellophane membranes and on living plant tissue. To search for target proteins recruited by Fbp1, a combination of sodium dodecylsulphate‐polyacrylamide gel electrophoresis (SDS‐PAGE) and matrix‐assisted laser desorption/ionization time‐of‐flight/time‐of‐flight (MALDI‐TOF/TOF) was used to compare proteins in mycelia of the wild‐type and Δfbp1 mutant. The proteomic approach identified 41 proteins differing significantly in abundance between the two strains, 17 of which were more abundant in the Δfbp1 mutant, suggesting a possible regulation by proteasome degradation. Interestingly, several of the identified proteins were related to vesicle trafficking. Microscopic analysis revealed an impairment of the Δfbp1 strain in directional growth and in the structure of the Spitzenkörper, suggesting a role of Fbp1 in hyphal orientation. Our results indicate that Fbp1 regulates protein turnover and pathogenicity in F. oxysporum.  相似文献   

16.
The pathogenicity of Listeria monocytogenes is related to its ability of invading and multiplying in eukaryotic cells. Its main virulence factors are now well characterized, but limited proteomic data is available concerning its adaptation to the intracellular environment. In this study, L. monocytogenes EGD (serotype 1/2a) grown in human THP‐1 monocytes (24 h) were successfully separated from host organelles and cytosolic proteins by differential and isopycnic centrifugation. For control, we used cell homogenates spiked with bacteria grown in broth. Proteomes from both forms of bacteria were compared using a 2‐D‐DIGE approach followed by MALDI‐TOF analysis to identify proteins. From 1684 distinct spots, 448 were identified corresponding to 245 distinct proteins with no apparent contamination of host proteins. Amongst them, 61 show underexpression (stress defense; transport systems, carbon metabolism, pyrimidines synthesis, D ‐Ala‐D ‐Ala ligase) and 22 an overexpression (enzymes involved in the synthesis of cell envelope lipids, glyceraldehyde‐3‐phosphate, pyruvate and fatty acids). Our proteomic analysis of intracellular L. monocytogenes (i) suggests that bacteria thrive in a more favorable environment than extracellularly, (ii) supports the concept of metabolic adaptation of bacteria to intracellular environment and (iii) may be at the basis of improved anti‐Listeria therapy.  相似文献   

17.
A previous study showed that the contents of caffeoylquinic acids and iridoids, the major bioactive components in the postharvest Lonicera japonica Thunb., were induced by enhanced ultraviolet (UV)‐A or UV‐B irradiation. To clarify the UV‐responsive key enzymes in the bioactive metabolites biosynthetic pathway and the related plant defense mechanism in L. japonica, 2DE in combination with MALDI‐TOF/TOF MS was employed. Seventy‐five out of 196 differential proteins were positively identified. Based on the functions, these proteins were grouped into nine categories, covering a wide range of molecular processes including the secondary metabolites (caffeoylquinic acids and iridoids) biosynthetic‐related proteins, photosynthesis, carbohydrate and energy metabolism, stress, DNA, transport‐related proteins, lipid metabolism, amino acid metabolism, cell wall. Of note is the increasing expression of 1‐deoxy‐d ‐xylulose 5‐phosphate reductoisomerase and 5‐enol‐pyruvylshikimate‐phosphate synthase, which was crucial to supply more precursor for the secondary metabolites including caffeoylquinic acids and iridoids. Thus, this study provides both the clues at the protein level for the increase of the two bioactive components upon UV irradiation and the profile of UV‐responsive proteins in L. japonica.  相似文献   

18.
19.
The ability of a new class of metal binding tags to facilitate the purification of recombinant proteins, exemplified by the tagged glutathione S‐transferase and human growth hormone, from Escherichia coli fermentation broths and lysates has been further investigated. These histidine‐containing tags exhibit high affinity for borderline metal ions chelated to the immobilised ligand, 1,4,7‐triazacyclononane (tacn). The use of this tag‐tacn immobilised metal ion affinity chromatography (IMAC) system engenders high selectivity with regard to host cell protein removal and permits facile tag removal from the E. coli‐expressed recombinant protein. In particular, these tags were specifically designed to enable their efficient removal by the dipeptidyl aminopeptidase 1 (DAP‐1), thus capturing the advantages of high substrate specificity and rates of cleavage. MALDI‐TOF MS analysis of the cleaved products from the DAP‐1 digestion of the recombinant N‐terminally tagged proteins confirmed the complete removal of the tag within 4‐12 h under mild experimental conditions. Overall, this study demonstrates that the use of tags specifically designed to target tacn‐based IMAC resins offers a comprehensive and flexible approach for the purification of E. coli‐expressed recombinant proteins, where complete removal of the tag is an essential prerequisite for subsequent application of the purified native proteins in studies aimed at delineating the molecular and cellular basis of specific biological processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Members of the genus Cronobacter are opportunistic pathogens for neonates and are often associated with contaminated milk powder formulas. At present little is known about the virulence mechanisms or the natural reservoir of these organisms. The proteome of Cronobacter turicensis 3032, which has recently caused two deaths, was mapped aiming at a better understanding of physiology and putative pathogenic traits of this clinical isolate. Our analyses of extracellular, surface‐associated and whole‐cell proteins by two complementary proteomics approaches, 1D‐SDS‐PAGE combined with LC‐ESI‐MS/MS and 2D‐LC‐MALDI‐TOF/TOF MS, lead to the identification of 832 proteins corresponding to a remarkable 19% of the theoretically expressed protein complement of C. turicensis. The majority of the identified proteins are involved in central metabolic pathways, translation, protein folding and stability. Several putative virulence factors, whose expressions were confirmed by phenotypic assays, could be identified: a macrophage infectivity potentiator involved in C. turicensis persistence in host cells, a superoxide dismutase protecting the pathogen against reactive oxygen species and an enterobactin‐receptor protein for the uptake of siderophore‐bound iron. Most interestingly, a chitinase and a metalloprotease that might act against insects and fungi but no casein hydrolysing enzymes were found, suggesting that there is an environmental natural habitat of C. turicensis 3032.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号