首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Monteiro LS  Suárez AS 《Amino acids》2012,43(4):1643-1652
Recently we reported the use of a sequence of alkylation and dehydration methodologies to obtain N-ethyl-α, β-dehydroamino acid derivatives. The application of this N-alkylation procedure to several methyl esters of β,β-dibromo and β-bromo, β-substituted dehydroamino acids protected with standard amine protecting groups was subsequently reported. The corresponding N-ethyl, β-bromo dehydroamino acid derivatives were obtained in fair to high yields and some were used as substrates in Suzuki cross-coupling reactions to give N-ethyl, β,β-disubstituted dehydroalanine derivatives. Herein, we further explore N-ethylation of β-halo dehydroamino acid derivatives using triethyloxonium tetrafluoroborate as alkylating agent, but substituting N,N-diisopropylethylamine for potassium tert-butoxide as auxiliary base. In these conditions, for all β-halo dehydroamino acid derivatives, reactions were complete and the N-ethylated derivative could be isolated in high yield. This method was also applied for N-ethylation of non-halogenated dehydroamino acids. Again, with all compounds the reactions were complete and the N-ethyl dehydroamino acid derivatives could be isolated in high yields. Some of these N-ethyl dehydroamino acid methyl ester derivatives were converted in high yields to their corresponding acids and coupled to an amino acid methyl ester to give N-ethyl dehydrodipeptide derivatives in good yields. Thus, this method constitutes a general procedure for high yielding synthesis of N-ethylated dehydroamino acids, which can be further applied in peptide synthesis.  相似文献   

2.
The synthesis of 2,4-dinitrophenyl derivatives of the 3-O-oleoyl and 3-O-palmitoyl esters of serine and threonine are described. The derivatives were purified by preparative thin-layer chromatography (TLC) and characterized by 1H-nuclear magnetic resonance (NMR) spectroscopy. These derivatives may be useful for researchers interested in characterizing covalently bound fatty acids on serine and threonine hydroxyl groups of cellular proteins.  相似文献   

3.
Chiral dehydroamino acid building blocks are versatile starting materials for the preparation of optically active unusual amino acids and other compounds of pharmacological interest. Herein we disclose the expedient preparation of dehydroalanines (ΔAla) equipped with oxazolidin-2-one (Oxd) chiral auxiliaries, Ts-Oxd-ΔAla-OMe. These compounds have been obtained in high yields from dipeptides Ts-Ser/Thr/phenylSer-Ser-OMe by the one-pot cyclization–elimination reaction with N,N-disuccinimidyl carbonate and catalytic DIPEA. To test the efficacy of the chiral auxiliaries in controlling asymmetric transformations, the Friedel–Crafts alkylations of indoles carrying diverse substituents were performed in the presence of Lewis and Brønsted acids. The reactions proceeded with good to excellent diastereomeric ratios giving (S)- or (R)-tryptophan derivatives, isolated very conveniently by simple flash chromatography. To verify the utility of this approach, optically pure (S)-2-methyltryptophan and (S)-5-fluorotryptophan were obtained and utilized to prepare analogues of endogenous opioid peptide endomorphin-1, H-Tyr-Pro-Trp-PheNH2.  相似文献   

4.
Summary. The ethynylglycine synthon, namely (R)-2,2-dimethyl-3-(tert-butoxycarbonyl)-4-ethynyl-oxazolidine, can be obtained through the synthetic elaboration of naturally occurring serine. This compound has been exploited as a helpful and versatile non-racemic building block to be used for the design and synthesis of biologically important compounds, mainly non-natural α-amino acids. Taking advantage of the terminal acetylene moiety several synthetic applications can be designed. Metalation followed by trapping with electrophiles or Cu/Pd catalysed coupling with aromatic halogenides are shown to deliver useful precursors of ethynylglycine derivatives. Additions of bimetallic reagents like stannyl- or silylcuprates are useful entries for the regio- and stereoselective functionalization of the lateral chain, aimed at the synthesis of modified vinylglycine precursors.An overview of our recent work in the field will be given, and the use of ethynylglycine synthon in the synthesis of non-racemic saturated and unsaturated non-natural amino acids will be briefly reviewed.  相似文献   

5.
Complete analysis of the phosphorylation of serine and threonine residues directly from biological extracts is still at an early stage and will remain a challenging goal for many years. Analysis of phosphorylated proteins and identification of the phosphorylated sites in a crude biological extract is a major topic in proteomics, since phosphorylation plays a dominant role in post-translational protein modification. Beta elimination of the serine/threonine-bound phosphate by alkali action generates (methyl)dehydroalanine. The reactivity of this group susceptible of nucleophilic attacks might be used as a tool for phosphoproteome analysis. Most of the known serine/threonine kinases recognize motifs in protein targets that are rich in lysine(s) and/or arginine(s). The (methyl)dehydroalanine resulting from beta elimination of the serine/threonine-bound phosphate by alkali action is likely to react with the amino groups of these neighboring amino acids. Furthermore, the addition reaction of dehydroalanine-peptides with a nucleophilic group more likely generates diastereoisomers derivatives. The internal cyclic bonds and/or the stereoisomer peptide derivatives thus generated confer resistance to trypsin cleavage and/or constitute stop signals for exopeptidases such as carboxypeptidase. This might form the basis of a method to facilitate the systematic identification of phosphorylated peptides.  相似文献   

6.
Several new β,β-dihalo and β-halo-β-substituted dehydroalanines and dehydrodipeptides were synthesized by reacting the corresponding dehydroamino acid derivative with a N-halosuccinimide or in the case of β,β-di-iododehydroalanines with iodine. The results obtained confirmed that the stereochemical outcome of the halogenation reaction with β-substituted dehydroamino acids depends on the substrate. Thus, an increase Z-stereoselectivity was found when the β-phenyldehydroalanines were used as substrates and when these compounds were N-protected with 4-tolylsulfonyl or with carbamates. From this study, it is also possible to conclude that when N-iodosuccinimide was used as reagent a much higher Z-stereoselectivity is found. The electrochemical behaviour of the halogenated dehydroamino acids was studied by cyclic voltammetry. The results show a shift in the reduction peak to higher potentials of the β-halogenated dehydroamino acids when compared with the corresponding non-halogenated derivatives. As expected, the β,β-dihalodehydroalanines exhibit higher peak potentials than β-halo-β-substituted dehydroalanines and the bromo derivatives have lower peak potentials when compared with the corresponding iododehydroamino acids. Controlled potential electrolysis of several β-halo-β-substituted dehydroamino acids afforded the corresponding dehalogenated dehydroamino acids as mixtures of their E and Z-isomers. In all cases, the major isomer isolated results from dehalogenation without isomerization. These new results show that electrochemical reduction constitutes a valuable method for the synthesis of the E-isomer of β-substituted dehydroalanines.  相似文献   

7.
Semiochemicals are natural products occurring in plants, bacteria or animals which function as carriers of a special message. Depending on the mode of function of the semiochemicals, they are divided into pheromones that trigger a response in members of the same species and allelochemicals (kairomones, allomones) that act between individuals of different species. Semiochemicals are very important compounds that influence the behavior of plants and animals and their adaption to a changing environment. As their importance for plants, animals and the ecological system itself is huge, the synthetic access to these chemicals, their precursors and derivatives is of high interest. Beyond novel strategies for the construction of semiochemical skeletons, combinatorial methods have been implemented to synthesize medium-sized and large-sized libraries that enable diverse modifications of the active compounds. These combinatorial approaches allow the screening for more active compounds and they elucidate the mode of action of the semiochemical or of the biological target. This review summarizes the state of the art procedures for the synthesis of important skeletons appearing in semiochemicals and gives special synthetic procedures for selected examples if the procedure is suitable for a general transfer to the synthesis of derivatives. The synthetic examples are given in the context of known active phytochemicals and their function that allows an evaluation of the given procedures with respect to the fulfillment of the common structural requirements (the structural diversity and flexibility) and the importance for the regulation of biological systems. Parts of this review were given in a lecture at the BioCom 12 in Cadiz, 2012.  相似文献   

8.
The cAMP-dependent protein kinase catalytic subunit phosphorylates serine residues more efficiently than threonine residues in synthetic peptides. In marked contrast, both amino acids are phosphorylated at similar rates when contained within the appropriate intact protein substrate. The structural basis for the discriminatory behavior observed in small peptides has been investigated and found to be a result of intrapeptide steric interactions in the vicinity of the threonine alcohol moiety. Leu-Arg-Arg-Gly-Thr-Leu-Gly, which is nearly free of these interactions, is phosphorylated at a rate that is almost comparable to its serine-containing counterpart.  相似文献   

9.
1. ClSO3H in trifluoroacetic acid rapidly converts serine and threonine into O-sulfate ester derivatives while tyrosine and tryptophan are converted into arylsulfonic acids. 2. H2SO4 in trifluoroacetic acid reacts more slowly with serine, threonine and tyrosine while is not able to modify tryptophan. 3. All other amino acids are perfectly stable under the above reaction conditions. 4. Peptides containing susceptible amino acid residues are specifically converted into the corresponding sulfonated derivatives in high or quantitative yield.  相似文献   

10.
To determine the inducer(s) of the biodegradative threonine deaminase in Escherichia coli, the effects of various amino acids on the synthesis of this enzyme were investigated. The complex medium used hitherto for the enzyme induction can be completely replaced by a synthetic medium composed of 18 natural amino acids. In this synthetic medium, the omission of each of the seven amino acids threonine, serine, aspartic acid, methionine, valine, leucine, and arginine resulted in the greatest loss of enzyme formation. These seven amino acids did not significantly influence the uptake of other amino acids into the cells. Furthermore, they did not stimulate the conversion of inactive enzyme into an active form, since they did not affect the enzyme level in cells in which protein synthesis was inhibited by chloramphenicol. Threonine, serine, aspartic acid, and methionine failed to stimulate enzyme production in cells in which messenger ribonucleic acid synthesis was arrested by rifampin, whereas valine, leucine, and arginine stimulated enzyme synthesis under the same conditions. Therefore, the first four amino acids appear to act as inducers of the biodegradative threonine deaminase in E. coli and the last three amino acids appear to be amplifiers of enzyme production. The term "multivalent induction" has been proposed for this type of induction, i.e., enzyme induction only by the simultaneous presence of several amino acids.  相似文献   

11.

Abstract  

An efficient stepwise synthesis of homo-oligomers and mixed oligomers of gabapentin and pregabalin on solid support using Fmoc-protected derivatives and HBTU/HOBt/DIEA as coupling agent is described. The synthesis was also carried out using solution phase methodology. The Gpn/Pgn homo oligomers and mixed oligomers forms C9 helix in solution as determined by NMR study. Chiral as well as achiral gamma amino acids were used for the synthesis of oligomers in order to investigate the secondary structural preferences.  相似文献   

12.
The effects of amino acids (aa) and N-(diisopropyloxyphosphoryl)-amino acids (DIPP-aa) on cell membranes were investigated by evaluating water and methyl urea permeability. Permeability coefficients Pf and Ps were determined by standard osmotic methods for cells ofPisum sativum stem base epidermis after 20 min exposure to a 5 mM solution of each aa and DIPP-aa. The Pf value ofP. sativum epidermal cells (untreated controls) was 1.3 ± 0.4 × 10-3 μm s-1. Treat ments with the diisopropyl-oxyphosphoryl derivatives of three one charged and three polar amino acids (serine, threonine, asparagine, and aspartic acid) and unsubstituted (free) serine and threonine increased water permeability up to about two fold of the control value. Serine and threonine and their DIPP-derivatives increased methyl urea permeability (controls 1.03 ± 0.09 × 10-3 μm s-1) 30 to 80 percent Other amino acids and their DIPP-derivatives caused small or insignificant changes of water permeability. Only certain polar amino acids and their DIPP-derivatives increased the osmotic water and methyl urea permeation through the plasma membrane. The specificity of these molecules on plasma membranes suggests that the active amino acids (serine and threonine) and their DIPP-derivatives interact with charged membrane molecules. The relatively small changes in water and methyl urea permeability may indicate that the effective aa’s and their DIPP-derivatives interact with phospholipids rather than aquaporin. A concurring alteration of water channel proteins, however, cannot excluded.  相似文献   

13.
Cutinase, an extracellular enzyme from Fusarium solani f. pisi contains about 4% covalently attached carbohydrates. Treatment of the enzyme with alkali resulted in β-elimination and generation of dehydroamino acids absorbing at 241 nm. NaB3H4 treatment in 0.1 N KOH followed by hydrolysis of the labeled protein gave rise to tritiated alanine, α-aminobutyric acid, phenylalanine, and tyrosine. Chemical and enzymatic degradation of the labeled phenylalanine showed that this amino acid was a 1:1 mixture of D- and L-stereo-isomers and that3H was equally distributed between the α- and β-positions. Therefore it is concluded that this glycoprotein contained 0-glycosidic linkages not only at serine and threonine residues but also at β-hydroxyphenylalanine and β-hydroxytyrosine; the latter two have not been found heretofore.  相似文献   

14.
Mutter’s pseudoproline dipeptides and Sheppard’s Hmb derivatives are powerful tools for enhancing synthetic efficiency in Fmoc SPPS. They work by exploiting the natural propensity of N-alkyl amino acids to disrupt the formation of the secondary structures during peptide assembly. Their use results in better and more predictable acylation and deprotection kinetics, enhanced reaction rates, and improved yields of crude products. However, these approaches have certain limitations: pseudoproline dipeptides can only be used for sequences containing serine or threonine, and the coupling of the amino acid following the Hmb residue can be extremely difficult. To alleviate some of these shortcomings, we have prepared a range of Fmoc-Aaa-(Dmb)Gly-OH dipeptides and tested their efficacy in the synthesis of a number of challenging hydrophobic peptides. We also compared the efficiency of N-Dmb against N-Hmb backbone protection in preventing aspartimide formation in the Fmoc SPPS of peptides containing the Asp-Gly sequence.  相似文献   

15.
The monofunctional phosphitylating reagents bis-(N,N-diethylamino)chlorophosphine and salicylchlorophosphine have been applied for the preparation of H-phosphonates of the amino acids serine, threonine and tyrosine. Experimental evidence showed that the latter reagent was less effective for the synthesis of a tyrosine H-phosphonate. The amino acids (peptide) H-phosphonates of serine or threonine proved to be suitable starting compounds for the formation of a phosphate diester bond with the 5'-OH of a d-nucleoside derivative using pivaloyl chloride as the activating reagent.  相似文献   

16.
Benzoate conjugation, represented by hippurate synthesis, was measured in hepatocytes isolated from normal and sparse-fur (spf) mutant mice, with X-linked ornithine transcarbamylase deficiency, to compare the effects of glyoxylate and piridoxylate (a hemiacetal of glyoxylate and pyridoxine), substituted for glycine. Various amino acid precursors of glycine described in the literature, including serine, threonine, glutamine, and glutamate, were studied in a similar manner. The role of glyoxylate and piridoxylate was also assessed in the renal cortex, in comparison with liver homogenates from normal and hyperammonemic mice. The results indicate the importance of glyoxylate and piridoxylate to completely substitute for glycine (96-115%) in isolated hepatocytes of spf/Y mice, as compared with 53-69% (p less than 0.05) in normal +/Y controls. The mean value of amino acid precursors to substitute for glycine in spf mice was serine 51%, threonine 29% (p less than 0.05), and glutamine 9%. In normal mice, only serine (21%) (p less than 0.01) partly substituted for glycine, whereas threonine, glutamine and glutamate gave negative values of net hippurate synthesis. The specific activity of renal cortex for hippurate synthesis from glycine, glyoxylate and piridoxylate was 3-4 times that of liver homogenates (p less than 0.01 - less than 0.001). A scheme for the transamination of glyoxylate by alanine is presented. Besides alanine, the excess of glycine, serine, and threonine is readily deaminated in the body to take part in gluconeogenic reactions, thus contributing to hyperammonemia. The cumulative effect of benzoate conjugation to drain these ammoniagenic precursors through glycine may be the basis of its therapeutic effect in hyperammonemia.  相似文献   

17.
Nonproteinogenic amino acids are valuable active compounds from their pharmacological and biochemical effects and also as novel building blocks for peptides. The preparation of furylalanine derivatives by asymmetric hydrogenation is described. Amino-phosphine-phosphinite-rhodium complexes catalyzed the hydrogenation of the prochiral dehydroamino acid precursors in high rate and with enantioselectivities of 70-90% ee. Substrate-catalyst ratios up to 2,000 can be used depending on the catalyst applied. The procedure turns out to be suitable for larger scale preparations.  相似文献   

18.
5-Formyltetrahydropteroylpolyglutamates can be synthesized and purified directly from dihydropteroylpolyglutamates in a single-step procedure without purification of intermediates and with yields greater than 90%. The procedure involves a coupled enzymatic synthesis of 10-formyltetrahydropteroylpolyglutamates using the enzymes dihydrofolate reductase, serine hydroxymethyltransferase, and C1-tetrahydrofolate synthase with catalytic amounts of NADPH. The 10-formyltetrahydropteroylpolyglutamates are subsequently converted to 5-formyltetrahydropteroylpolyglutamates at 90 degrees C with near quantitative yields. 5-Formyltetrahydropteroylpolyglutamates are the only stable reduced derivatives of tetrahydropteroylpolyglutamates and can be purified and stored indefinitely without decomposition. Additionally, 5-formyltetrahydropteroylpolyglutamates can be readily converted to other derivatives of tetrahydropteroylpolyglutamates with yields greater than 95%. Also described is the synthesis of tetrahydropteroylglutamates labeled at C-11 with either 14C or 13C. Rapid purification procedures for serine hydroxymethyltransferase and C1-tetrahydrofolate synthase from frozen rabbit livers are presented.  相似文献   

19.
The rise of CuI‐catalyzed click chemistry has initiated an increased demand for azido and alkyne derivatives of amino acid as precursors for the synthesis of clicked peptides. However, the use of azido and alkyne amino acids in peptide chemistry is complicated by their high cost. For this reason, we investigated the possibility of the in‐house preparation of a set of five Fmoc azido amino acids: β‐azido l ‐alanine and d ‐alanine, γ‐azido l ‐homoalanine, δ‐azido l ‐ornithine and ω‐azido l ‐lysine. We investigated several reaction pathways described in the literature, suggested several improvements and proposed several alternative routes for the synthesis of these compounds in high purity. Here, we demonstrate that multigram quantities of these Fmoc azido amino acids can be prepared within a week or two and at user‐friendly costs. We also incorporated these azido amino acids into several model tripeptides, and we observed the formation of a new elimination product of the azido moiety upon conditions of prolonged couplings with 2‐(1H‐benzotriazol‐1‐yl)‐1,1,3,3‐tetramethyluronium hexafluorophosphate/DIPEA. We hope that our detailed synthetic protocols will inspire some peptide chemists to prepare these Fmoc azido acids in their laboratories and will assist them in avoiding the too extensive costs of azidopeptide syntheses. Experimental procedures and/or analytical data for compounds 3 – 5 , 20 , 25 , 26 , 30 and 43 – 47 are provided in the supporting information. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.  相似文献   

20.
The syntheses of a protein kinase C (PKC) peptide substrate, H-Lys-Arg-Thr-Leu-Arg-OH, and a phosphopeptide analog of the synthetic substrate, H-Lys-Arg-Thr(P)-Leu-Arg-OH, are reported. PKC phosphorylates the peptide with an apparent KM of 0.30 +/- 0.04 mM and an apparent Vmax equal to one-tenth that of histone III-S. The synthesis of the phosphopeptide features a recently developed convenient phosphorylation procedure for serine and threonine using N,N-diethylamino-dibenzylphosphoramidite. A complete characterization of the PKC substrate and its corresponding phosphopeptide by C-H COSY 2D n.m.r. is included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号