首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protected peptides assembled on a phenolic resin support were cleared by peroxide-catalysed hydrolysis. In genenal peptide phenyl ester resins were more labile to nucleophiles than were corresponding Merrifield resin derivatives; transesterification with dimethylaminoethanol providing on alternative cleavage method for peroxide-sensitive peptides. Losses of radiolabelled peptide from both Merrifield and phenolic resins were determined during acid deprotection, base wash and coupling steps in the synthesis of a tetrapeptide. Using 40% (v/v) trifluoroacetic acid in dichloromethane for Boc-deprotection the phenolic resin gave improved results compared to the Merrifield resin. The merits of the procedure for the preparation of protected peptide acids suitable for subsequent condensation reactions were exemplified by the synthesis of an octapeptide sequence of a modified lysozyme.  相似文献   

2.
Three peptide fragments selected from the NS-1 region of hepatitis C-viral polyprotein (Leu-Ile-Asn-Thr-Asn-Ala-Ser-Trp-His-Ala-Asn-Arg-Thr-Ala-Leu-Ser Asn-Asp Ser-Lys Leu Asn Thr-Gly Ala NH(2), Leu-lle Asn Thr Asn Ala Ser-Trp-His-Ala-Asn-Arg-Thr Ala NH(2) and Leu-Asn-Cys(Acm)-Asn-Asp-Ser-Leu-Asn-Thr-Ala-NH(2)) have been synthesized on PS-BDODMA resin. The synthetic capability of the resin PS-BDODMA resin was compared with Merrifield resin. The peptides were synthesized by the stepwise fluoren-9-yl methoxycarbonyl (Fmoc) solid-phase method. The synthesized peptides were purified by HPLC and the identity of the peptides was established by mass spectrum and amino acid analysis. The synthesis of these peptides illustrates the application of the PS-BDODMA resin for the synthesis of long chain peptides in high yield and homogeneity compared to the Merrifield resin.  相似文献   

3.
Attracted by the possibility to optimize time and yield of the synthesis of difficult peptide sequences by MW irradiation, we compared Fmoc/tBu MW‐assisted SPPS of 1–34 N‐terminal fragment of parathyroid hormone‐related peptide (PTHrP) with its conventional SPPS carried out at RT. MWs were applied in both coupling and deprotection steps of SPPS protocol. During the stepwise elongation of the resin‐bound peptide, monitoring was conducted by performing MW‐assisted mini‐cleavages and analyzing them by UPLC‐ESI‐MS. Identification of some deletion sequences was helpful to recognize critical couplings and as such helped to guide the introduction of MW irradiations to these stages. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
A convergent synthesis for erythropoietin (EPO) 1‐28 N‐glycopeptide hydrazides was developed. In this approach, EPO 1‐28 peptides were synthesized on the solid phase and converted to C‐terminal hydrazides after cleavage from the resin. After selective deprotection of the Asp24 side chain, the desired glycosylamine was coupled by pseudoproline‐assisted Lansbury aspartylation. Although the initial yields of the EPO 1‐28 glycopeptides were satisfactory, they could be markedly improved by increasing the purity of the peptide using a reversed‐phase high‐performance liquid chromatography (RP‐HPLC) purification of the protected peptide.  相似文献   

5.
In this paper, we report the solid-phase synthesis of peptides containing O-phosphonoserine using BOP as coupling reagent. Commercially available Fmoc amino-acids linked to p-alkoxybenzyl resin were used in the first step and Alloc amino acids in the following. Alloc group was removed by catalytic hydrostannolytic cleavage. Acid-labile side-chain protecting groups (including phosphate residue) were used. Thus, both removal of side-chain protecting groups and cleavage of the phosphopeptide from the resin were achieved in one step by treatment with TFA. Alloc serine was phosphorylated by the phosphoramidite method. This strategy enables the preparation of peptides with selectively phosphorylated residue and overcomes problems due to repetitive treatments with TFA and final cleavage with HF.  相似文献   

6.
Infrared and Raman spectroscopy allow direct spectral analysis of the solid‐phase, thus avoiding the tedious cleavage of compounds from the solid support. With diagnostic bands in starting materials or products, infrared and Raman spectroscopy are efficient in monitoring each reaction step directly on the solid phase. Consequently, infrared and Raman spectroscopy have evolved as the premier analytical methodology for direct analysis on the solid support. While infrared transmission spectroscopy is a general analytical method for resin samples, internal reflection spectroscopy is especially suited for solid polymer substrates known as “pins” or “crowns.” Single bead analysis is done best by infrared microspectroscopy, whereas photoacoustic spectroscopy allows totally nondestructive analysis of resin samples. With an automated accessory, diffuse reflection spectroscopy provides a method for high throughput on‐bead monitoring of solid‐phase reactions. Providing identification based on molecular structure, HPLC‐FTIR is, therefore, complementary to LC‐MS. Additionally, Raman spectroscopy as a complement to infrared spectroscopy can be applied to resin samples and—using a Raman microscope—to single beads. Fluorometry as an extremely sensitive spectroscopic detection method allows rapid quantification of organic reactions directly on the resin. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng (Comb Chem) 61:179–187, 1998/1999.  相似文献   

7.
A high swelling resin, CLPSER has been developed and utilized for the solid phase synthesis of Pardaxin, which is an 18-residue peptide. The resin was characterized by gel phase (13)C NMR, IR and SEM. The utility of the new polymer support in polypeptide synthesis was further established by the comparative synthesis of pardaxin with commercially available Merrifield resin. The MALDI TOF MS, amino acid analysis and the HPLC revealed the superior quality of CLPSER.  相似文献   

8.
Decomposition of the resin linkers during TFA cleavage of the peptides in the Fmoc strategy leads to alkylation of sensitive amino acids. The C-terminal amide alkylation, reported for the first time, is shown to be a major problem in peptide amides synthesized on the Rink amide resin. This side reaction occurs as a result of the Rink amide linker decomposition under TFA treatment of the peptide resin. The use of 1,3-dimethoxybenzene in a cleavage cocktail prevents almost quantitatively formation of C-terminal N-alkylated peptide amides. Oxidized by-product in the tested Cys- and Met-containing peptides were not observed, even if thiols were not used in the cleavage mixture.  相似文献   

9.
A potent and persistent non-mammalian derived vasodilator, maxadilan (Maxa) consists of 61 amino acids with two disulfide linkages and acts as an agonist of the type I receptor of pituitary adenylate cyclase activating polypeptide (PACAP), although there is very little sequence similarity. The total chemical syntheses of Maxa, its disulfide isomers and various fragments have been performed successfully by highly efficient solid-phase peptide synthesis (SPPS). A “difficult sequence”, envisaged in the middle region of Maxa, could be overcome by improved synthesis protocols. After assembly peptides were liberated from the resin by cleavage. Peptides having disulfide(s) were purified by two steps of preparative HPLC using cation exchange followed by reverse phase columns. Purified peptides were characterized by HPLC, Edman-sequencing, amino acid analysis and mass spectrometry in addition to disulfide form determination. The peptides obtained were used for recognition studies by the melanophore assay to confirm the native disulfide form. Peptide libraries related to Maxa, produced in the present study, will be useful for the elucidation of the structural requirements of Maxa for interaction with the PACAP type 1 receptor (PAC1). This paper is dedicated to the memory of Professor Bruce Merrifield, a pioneer and one of the most respected experimental scientists, who made extraordinary contributions to high throughput chemical synthesis.  相似文献   

10.
The success of solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl (Fmoc) amino acids is often limited by deleterious side reactions which occur during TFA peptide-resin cleavage and side-chain deprotection. The majority of these side reactions modify susceptible residues, such as Trp, Tyr, Met, and Cys, with TFA-liberated side-chain protecting groups and linkers. The purpose of this study was to assess the relative effectiveness of various scavengers in suppressing these side reactions. We found that the cleavage mixture 82.5% TFA : 5% phenol : 5% H2O : 5% thioanisole : 2.5% EDT (Reagent K) was maximally efficient in inhibiting a great variety of side reactions. Synthesis and cleavage of 10 peptides, each containing 20-50 residues, demonstrated the complementarity of Fmoc chemistry with Reagent K for efficient synthesis of complex peptides.  相似文献   

11.
A new safety-catch linker for Fmoc solid-phase peptide synthesis of cyclic peptides is reported. The linear precursors were assembled on a tert-butyl protected catechol derivative using optimized conditions for Fmoc-removal. After activation of the linker using TFA, neutralization of the N-terminal amine induced cyclization with concomitant cleavage from the resin yielding the cyclic peptides in DMF solution. Several constrained cyclic peptides were synthesized in excellent yields and purities.  相似文献   

12.
Solid-phase synthesis and characterization of N-methyl-rich peptides.   总被引:1,自引:0,他引:1  
A library of peptides required for a project investigating the factors relevant for blood-brain barrier transport was synthesized on solid phase. As a result of the high N-methylamino acid content in the peptides, their syntheses were challenging and form the basis of the work presented here. The coupling of protected N-methylamino acids with N-methylamino acids generally occurs in low yield. (7-azabenzotriazol-1-yloxy)-tris(pyrrolidino)phosphonium hexafluorophosphate (PyAOP) or PyBOP/1-hydroxy-7-azabenzotriazole (HOAt), are the most promising coupling reagents for these couplings. When a peptide contains an acetylated N-methylamino acid at the N-terminal position, loss of Ac-N-methylamino acid occurs during trifluoroacetic acid (TFA) cleavage of the peptide from the resin. Other side reactions resulting from acidic cleavage are described here, including fragmentation between consecutive N-methylamino acids and formation of diketopiperazines (DKPs). The time of cleavage is shown to greatly influence synthetic results. Finally, high-performance liquid chromatography (HPLC) profiles of N-methyl-rich peptides show multiple peaks because of slow conversion between conformers.  相似文献   

13.
Solid-phase synthesis and aminolysis cleavage conditions were optimized to obtain N- and C-terminally protected hydrophobic peptides with both high quality and yield. Uncharged 'WALP' peptides, consisting of a central (Leu-Ala)n repeating unit (where n = 5, 10.5 or 11.5) flanked on both sides by Trp 'anchors', and gramicidin A (gA) were synthesized using 9-fluorenylmethoxycarbonyl chemistry from either Wang or Merrifield resins. For WALP peptides, the N-terminal amino acid was capped by coupling N-acetyl- or N-formyl-Ala or -Gly to the peptide/resin or by formylation of the completed peptide/resin with para-nitrophenylformate (p-NPF). N-Terminal acetyl- or formyl-Ala racemized when coupled as an HOBt-ester to the resin-bound peptide, but not when the peptide was formylated with p-NPF. Racemization was avoided at the last step by completing the peptide with acetyl- or formyl-Gly. For both WALP peptides and gA, cleavage conditions using ethanolamine or ethylenediamine were optimized as functions of solvent, time, temperature and resin type. For WALP peptides, maximum yields of highly pure peptide were obtained by cleavage with 20% ethanolamine or ethylenediamine in 80% dichloromethane for 48 h at 24 degrees C. N-Acetyl-protected WALP peptides consistently gave higher yields than those protected with N-formyl. For gA, cleavage with 20% ethanolamine or ethylenediamine in 80% dimethylformamide for 48 h at 24 degrees C gave excellent results. For both WALP peptides and gA, decreasing the cleavage time to 4 h and increasing the temperature to 40-55 degrees C resulted in significantly lower yields. The inclusion of hexafluoroisopropanol in the cleavage solvent mixture did not improve yields for either gA or WALP peptides.  相似文献   

14.
Borah JM  Chowdhury P 《Steroids》2011,76(12):1341-1345
Microwave (MW) assisted reactions are currently having considerable importance in the synthesis of organic compounds. Considering the remarkable application of Baeyer–Villiger (BV) reaction in the synthesis of natural products and steroid–peptide conjugates, we report here some of our findings of BV oxidation of carbonyl compounds with special reference to steroidal ketones under MW irradiation justifying its accelerating effect.  相似文献   

15.
This article illustrates the successful and efficient solid phase assembly of hydrophobic difficult sequence peptides following both t-Boc and Fmoc chemistry. The peptides were synthesized on an optimized 1,4-butanediol dimethacrylate-crosslinked polystyrene support (BDDMA-PS). Four difficult sequence test peptides, VAVAG, VIVIG, QVGQVELG and VQAAIDYING, were synthesized in relatively good yield and purity without any aggregation problems. The peptides were assembled on chloromethylated and 4-hydroxymethylphenoxymethyl (HMP) BDDMA-PS resins. The peptides were fabricated using Boc amino acid 1-hydroxybenzotriazolyl and Fmoc amino acid pentafluorophenyl active esters in coupling reactions. The peptides after synthesis were cleaved from the polymeric support by exposing the peptidyl resin to 90% trifluroacetic acid/5% thioanisole/5% EDT mixture. The HPLC and MALDI TOF MS studies of the peptides revealed the high homogeneity of the synthesized peptides. Chloromethylated resin having a functional group loading of 1.14 mmol Cl/g was used for the synthesis. The yield and homogeneity of these peptides synthesized using the new support were high when compared with the conventional DVB-PS resin.  相似文献   

16.
Alkylation of sensitive amino acids during synthesis of biologically important peptides is a common and well-documented problem in Fmoc-based strategy. Herein, we probed for the first time an unexpected S-alkylation of Cys-containing peptides that occur during the final TFA cleavage of peptides from the Wang solid support. Through a battery of approaches (NMR, UV and LC–MS) the formed by-product was assigned as the alkylation of the cysteine sulfydryl group by the p-hydroxyl benzyl group derived from the acidic Wang linker decomposition. Factors affecting this side reaction were monitored and a protocol that minimizes the presence of the by-product is reported.  相似文献   

17.
A method for the preparation of a biotinylated resin that can be elongated by standard methods of solid-phase peptide synthesis to give peptides biotinylated at the carboxy terminus is described. This methodology is particularly important for the preparation of biotinylated peptides in which a free amino terminus is required. Coupling of N epsilon-9-fluorenylmethoxycarbonyl-(Fmoc)-N alpha-tert-butyloxycarbonyl(Boc)-L- lysine to p-methylbenzhydrylamine resin, followed by removal of the Fmoc protecting group and reaction with (+)-biotin-4-nitrophenyl ester yielded N alpha-Boc-biocytin-p-methyl-benzhydrylamine resin. The utility of this resin was tested by the synthesis of a biotinylated peptide, Gly-Asn-Ala-Ala-Ala-Ala-Arg-Arg-biocytin-NH2, for use as an in vitro substrate for myristoyl-CoA:protein N-myristoyltransferase (NMT), the enzyme that catalyzes protein N-myristoylation. Analysis of the peptide derivative by HPLC and mass spectrometry revealed a single major product of the expected mass, indicating that the biotin group survived cleavage and deprotection with HF. The biotinylated peptide served as a substrate for NMT, and the resulting myristoylated peptide could be quantitatively recovered by adsorption to immobilized avidin.  相似文献   

18.
Kinetics and cleavage conditions of peptide amide synthesis were studied using the anchor molecules 5-(4'-aminomethyl-3',5'-dimethoxyphenoxy)valeric acid (4-ADPV-OH) and 5-(2'-aminomethyl-3'-5'-dimethoxyphenoxy) valeric acid (2-ADPV-OH). Unexpectedly the anchor amide alanyl-4-ADPV-NH2 was isolated and characterized as an intermediate during the cleavage with trifluoroacetic acid (TFA) of alanyl-4-ADPV-alanyl-aminomethyl-polystyrene to yield the alanine amide. As a matter of fact the NH--CH alpha bond of the alanyl spacer has to be cleaved to form this intermediate. Using TFA-dichloromethane (1:9) alanyl-4-ADPV-NH2 was obtained as a cleavage product in 50% yield within 60 min, whereas the isomeric alanyl-2-ADPV-NH2 was formed more slowly under these mild conditions. At high TFA concentration no difference between the 2- and 4-ADPV anchor was observed in the rate of formation of the free alanine amide. The presence of tryptophan amide in the cleavage mixture resulted in an anchor alkylated tryptophan amide, which remains stable in acidic solution but disappears rapidly in the presence of the resin. A low TFA/high TFA cleavage procedure is recommended for peptide amid synthesis applying the ADPV anchor.  相似文献   

19.
Methods for rapid and direct quantification of enzyme kinetics independent of the substrate stand in high demand for both fundamental research and bioprocess development. This study addresses the need for a generic method by developing an automated, standardizable HPLC platform monitoring reaction progress in near real‐time. The method was applied to amine transaminase (ATA) catalyzed reactions intensifying process development for chiral amine synthesis. Autosampler‐assisted pipetting facilitates integrated mixing and sampling under controlled temperature. Crude enzyme formulations in high and low substrate concentrations can be employed. Sequential, small (1 µL) sample injections and immediate detection after separation permits fast reaction monitoring with excellent sensitivity, accuracy and reproducibility. Due to its modular design, different chromatographic techniques, e.g. reverse phase and size exclusion chromatography (SEC) can be employed. A novel assay for pyridoxal 5'‐phosphate‐dependent enzymes is presented using SEC for direct monitoring of enzyme‐bound and free reaction intermediates. Time‐resolved changes of the different cofactor states, e.g. pyridoxal 5'‐phosphate, pyridoxamine 5'‐phosphate and the internal aldimine were traced in both half reactions. The combination of the automated HPLC platform with SEC offers a method for substrate‐independent screening, which renders a missing piece in the assay and screening toolbox for ATAs and other PLP‐dependent enzymes.  相似文献   

20.
A highly solvating copolymer was prepared in high yield by introducing a flexible crosslinker, 1,4-butanedioldimethacrylate, into the polystyrene matrix by a free radical aqueous suspension polymerization. A 2 mol% crosslinked resin showed rigidity and mechanical characteristics comparable to those of divinylbenzene-crosslinked polystyrene (Merrifield resin, DVB-PS) support. Swelling and solvation characteristics of the new resin, BDDMA-PS, were much higher than DVB-PS support in all solvents used for solid phase peptide synthesis. The diacrylate crosslinks in the resin network were found to be highly stable even after 48 h treatment with neat TFA, 6 N HCl and 6 N KOH at 110 degrees C. To demonstrate the usefulness of the new resin in high capacity peptide synthesis, a typical difficult peptide, acyl carrier protein (ACP) fragment (65-74), was synthesized on commercially available 1 mol% crosslinked DVB-PS and 2 mol% crosslinked BDDMA-PS resins under identical conditions. A protocol using NMP/DMSO mediated coupling was employed for chain assembly. The yield and purity of the product from BDDMA-PS resin was higher than when the DVB-PS resin was used. The mechanistic reason behind the synthetic efficiency of the new resin was found to be its ability to induce random coil conformation to the growing peptide chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号