共查询到20条相似文献,搜索用时 0 毫秒
1.
TRPML3 is a Ca2+ permeable cation channel expressed in multiple intracellular compartments. Although TRPML3 is implicated in autophagy, how TRPML3 can regulate autophagy is not understood. To search interacting proteins with TRPML3 in autophagy, we performed split-ubiquitin membrane yeast two-hybrid (MY2H) screening with TRPML3-loop as a bait and identified GATE16, a mammalian ATG8 homologue. GST pull-down assay revealed that TRPML3 and TRPML3-loop specifically bind to GATE16, not to LC3B. Co-immunoprecipitation (co-IP) experiments showed that TRPML3 and TRPML3-loop pull down only the lipidated form of GATE16, indicating that the interaction occurs exclusively at the organellar membrane. The interaction of TRPML3 with GATE16 and GATE16-positive vesicle formation were increased in starvation induced autophagy, suggesting that the interaction facilitates the function of GATE16 in autophagosome formation. However, GATE16 was not required for TRPML3 trafficking to autophagosomes. Experiments using dominant-negative (DN) TRPML3(D458K) showed that GATE16 is localized not only in autophagosomes but also in extra-autophagosomal compartments, by contrast with LC3B. Since GATE16 acts at a later stage of the autophagosome biogenesis, our results suggest that TRPML3 plays a role in autophagosome maturation through the interaction with GATE16, by providing Ca2+ in the fusion process. 相似文献
2.
Hilla Weidberg Elena Shvets Tomer Shpilka Frida Shimron Vera Shinder Zvulun Elazar 《The EMBO journal》2010,29(11):1792-1802
Autophagy, a critical process for bulk degradation of proteins and organelles, requires conjugation of Atg8 proteins to phosphatidylethanolamine on the autophagic membrane. At least eight different Atg8 orthologs belonging to two subfamilies (LC3 and GATE‐16/GABARAP) occur in mammalian cells, but their individual roles and modes of action are largely unknown. In this study, we dissect the activity of each subfamily and show that both are indispensable for the autophagic process in mammalian cells. We further show that both subfamilies act differently at early stages of autophagosome biogenesis. Accordingly, our results indicate that LC3s are involved in elongation of the phagophore membrane whereas the GABARAP/GATE‐16 subfamily is essential for a later stage in autophagosome maturation. 相似文献
3.
《Autophagy》2013,9(4):623-636
Protein phosphatase 2A (PP2A) holoenzyme is a heterotrimeric complex, consisting of A, B and C subunits. The catalytic subunit PP2A-C (microtubule star/mts) binds to the C-terminal part of the scaffold protein PP2A-A (PP2A-29B). In Drosophila, there are three different forms of B subunits (widerborst/wdb, twins/tws and PP2A-B'), which determine the subcellular localization and substrate specificity of the holoenzyme. Previous studies demonstrated that PP2A is involved in the control of TOR-dependent autophagy both in yeast and mammals. Furthermore, in Drosophila, wdb genetically interacts with the PtdIns3K/PTEN/Akt signaling cascade, which is a main upstream regulatory system of dTOR. Here we demonstrate that in Drosophila, two different PP2A complexes (containing B' or wdb subunit) play essential roles in the regulation of starvation-induced autophagy. The PP2A-A/wdb/C complex acts upstream of dTOR, whereas the PP2A-A/B'/C complex functions as a target of dTOR and may regulate the elongation of autophagosomes and their subsequent fusion with lysosomes. We also identified three Drosophila Atg orthologs (Atg14, Atg17 and Atg101), which represent potential targets of the PP2A-A/B'/C complex during autophagy. 相似文献
4.
During autophagy, double-membrane autophagosomes are observed in the cytoplasm. Thus, extensive studies have focused on autophagic turnover of cytoplasmic material. Whether autophagy has a role in degrading nuclear constituents is poorly understood. We reveal that the autophagy protein LC3/Atg8 directly interacts with the nuclear lamina protein LMNB1 (lamin B1), and binds to LMN/lamin-associated chromatin domains (LADs). Through these interactions, autophagy specifically mediates destruction of nuclear lamina during tumorigenic stress, such as by activated oncogenes and DNA damage. This nuclear lamina degradation upon aberrant cellular stress impairs cell proliferation by inducing cellular senescence, a stable form of cell-cycle arrest and a tumor-suppressive mechanism. Our findings thus suggest that, in response to cancer-promoting stress, autophagy degrades nuclear material to drive cellular senescence, as a means to restrain tumorigenesis. Our work provokes a new direction in studying the role of autophagy in the nucleus and in tumor suppression. 相似文献
5.
Vladimir M. Korkhov 《Journal of cellular biochemistry》2009,107(1):86-95
Disruption of autophagy leads to accumulation of intracellular multilamellar inclusions morphologically similar to organised smooth endoplasmic reticulum (OSER) membranes. However, the relation of these membranous compartments to autophagy is unknown. The purpose of this study was to test whether OSER plays a role in the autophagic protein degradation pathway. Here, GFP‐LC3 is shown to localise to the OSER membranes induced by calnexin expression both in transiently transfected HEK293 cells and in mouse embryo fibroblasts. In contrast to GFP‐LC3, endogenous LC3 is excluded from these membranes under normal conditions as well as after cell starvation. Furthermore, YFP‐Atg5, a protein essential for autophagy and known to reside on autophagic membranes, is excluded from the calnexin‐positive inclusion structures. In cells devoid of Atg5, a protein essential for autophagy and known to reside on autophagic membranes, colocalisation of calnexin with GFP‐LC3 within the multilamellar bodies is preserved. I show that calnexin, a protein enriched in the OSER, is not subject to autophagic or lysosomal degradation. Finally, GFP‐LC3 targeting to these membranes is independent of its processing and insensitive to drugs modulating autophagic and lysosomal protein degradation. These observations are inconsistent with a role of autophagic/lysosomal degradation in clearance of multilamellar bodies comprising OSER. Furthermore, GFP‐LC3, a fusion protein widely used as a marker for autophagic vesicles and pre‐autophagic compartments, may be trapped in this compartment and this artefact must be taken into account if the construct is used to visualise autophagic membranes. J. Cell. Biochem. 107: 86–95, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
6.
Statins are widely used to treat hypercholesterolemia, but they are associated with muscle-related adverse events, by as yet, inadequately resolved mechanisms. In this study, we report that statins induced autophagy in cultured human rhabdomyosarcoma A204 cells. Potency differed widely among the statins: cerivastatin induced autophagy at 0.1 μM, simvastatin at 10 μM but none was induced by pravastatin. Addition of mevalonate, but not cholesterol, blocked induction of autophagy by cerivastatin, suggesting that this induction is dependent on modulation of isoprenoid metabolic pathways. The statin-induced autophagy was not observed in other types of cells, such as human hepatoma HepG2 or embryonic kidney HEK293 cells. Muscle-specific abortive induction of autophagy by hydrophobic statins is a possible mechanism for statin-induced muscle-related side effects. 相似文献
7.
8.
Saki Taniguchi Masayuki Toyoshima Tomoyo Takamatsu Joji Mima 《Protein science : a publication of the Protein Society》2020,29(6):1387-1400
In macroautophagy, de novo formation of the double membrane‐bound organelles, termed autophagosomes, is essential for engulfing and sequestering the cytoplasmic contents to be degraded in the lytic compartments such as vacuoles and lysosomes. Atg8‐family proteins have been known to be responsible for autophagosome formation via membrane tethering and fusion events of precursor membrane structures. Nevertheless, how Atg8 proteins act directly upon autophagosome formation still remains enigmatic. Here, to further gain molecular insights into Atg8‐mediated autophagic membrane dynamics, we study the two representative human Atg8 orthologs, LC3B and GATE‐16, by quantitatively evaluating their intrinsic potency to physically tether lipid membranes in a chemically defined reconstitution system using purified Atg8 proteins and synthetic liposomes. Both LC3B and GATE‐16 retained the capacities to trigger efficient membrane tethering at the protein‐to‐lipid molar ratios ranging from 1:100 to 1:5,000. These human Atg8‐mediated membrane‐tethering reactions require trans‐assembly between the membrane‐anchored forms of LC3B and GATE‐16 and can be reversibly and strictly controlled by the membrane attachment and detachment cycles. Strikingly, we further uncovered distinct membrane curvature dependences of LC3B‐ and GATE‐16‐mediated membrane tethering reactions: LC3B can drive tethering more efficiently than GATE‐16 for highly curved small vesicles (e.g., 50 nm in diameter), although GATE‐16 turns out to be a more potent tether than LC3B for flatter large vesicles (e.g., 200 and 400 nm in diameter). Our findings establish curvature‐sensitive trans‐assembly of human Atg8‐family proteins in reconstituted membrane tethering, which recapitulates an essential subreaction of the biogenesis of autophagosomes in vivo. 相似文献
9.
Jing Deng Qin Huang Yueqin Wang Pei Shen Fei Guan Jianrong Li Hanju Huang Chunwei Shi 《Biochemical and biophysical research communications》2014
The role of autophagy in Hif-1α modulated activation of hepatic stellate cells was illustrated in current work. Autophagy markers were determined in livers of Schistosoma japonicum infected mice and hypoxia or LPS treated human hepatic stellate cell, LX-2 cells. The action of Hif-1 to autophagy was defined as increase of autophagy markers was significantly suppressed in Hif-1α siRNA transfected cells upon hypoxia or LPS stimulation. The function of autophagy in activation of LX-2 cells was assessed as increase of activation markers was blocked using autophagy inhibitors under hypoxia and LPS stimulation. Conclusively, Hif-1α regulates activation of hepatic stellate cell by modulating autophagy. 相似文献
10.
Dan-Yan Huang Xiao-Ling Xia Run Huang Sheng Li Dong-Wei Yuan Su-Ning Liu 《Insect Science》2021,28(6):1621-1632
In insects, 20-hydroxyecdysone (20E) limits systemic growth by triggering developmental transitions. Previous studies have shown that 20E-induced let-7 exhibits crosstalk with the cell cycle. Here, we examined the underlying molecular mechanisms and physiological functions of 20E-induced let-7 in the fat body, an organ for energy storage and nutrient mobilization which plays a critical role in the larval growth. First, the overexpression of let-7 decreased the body size and led to the reduction of both nucleolus and cell sizes in the larval fat body. In contrast, the overexpression of let-7-Sponge increased the nucleolus and cell sizes. Moreover, we found that cdc7, encoding a conserved protein kinase that controls the endocycle, is a target of let-7. Notably, the mutation of cdc7 in the fat body resulted in growth defects. Overall, our findings revealed a novel role of let-7 in the control of endoreduplication-related growth during larval-prepupal transition in Drosophila. 相似文献
11.
Nuclear development in locust fat body: the influence of juvenile hormone on inclusion bodies and the nuclear matrix 总被引:1,自引:0,他引:1
The hormonal induction of vitellogenesis in insects and in oviparous vertebrates are prime models of gene regulation in eukaryotes. In vertebrates the process is under estrogenic control and normally confined to females, although males can be artificially induced. In locust in contrast, juvenile hormone (JH) is central to fat body development in both males and females, yet the response is strongly sex limited not only for vitellogenin production but also in terms of total protein, DNA and RNA synthesis and nuclear ploidy levels. To differentiate further possible sex and/or JH related developmental aspects in locusts, large-scale nuclear events were examined during normal adult maturation and in animals treated with antiallatropins and JH analogs. Fat body nuclei undergo extensive restructuring during normal development in both sexes. This included progressive nuclear enlargement, accompanied by extensive proliferation of nuclear matrix components and elaboration of complex inclusion bodies (NB). The isolated protein matrix was unusually complex relative to similar structures from vertebrates and the NB were firmly anchored to it. Although matrix proteins were qualitatively similar to those from other sources, as assessed by SDS polyacrylamide gel electrophoresis, several major matrix polypeptides, including lamins A and B, and components greater than 150 kD, fluctuated quantitatively during development and in concert with nuclear enlargement. The number and morphology of the NB were unrelated to sex, but increased in direct proportion to absolute nuclear volumes. All changes were more pronounced in females, where higher ploidy levels, larger nuclei and correspondingly more internal matrix elements occurred. Suppression of JH production by precocene prevented all foregoing nuclear changes, but re-exposure to methoprene rapidly induced normal development. The results are compared to analogous nuclear changes in steroid responsive vertebrate tissues. 相似文献
12.
《Autophagy》2013,9(4):496-509
Autophagy is a highly conserved cellular response to starvation that leads to the degradation of organelles and long-lived proteins in lysosomes and is important for cellular homeostasis, tissue development and as a defense against aggregated proteins, damaged organelles and infectious agents. Although autophagy has been studied in many animal species, reagents to study autophagy in avian systems are lacking. Microtubule-associated protein 1 light chain 3 (MAP1LC3/LC3) is an important marker for autophagy and is used to follow autophagosome formation. Here we report the cloning of avian LC3 paralogs A, B and C from the domestic chicken, Gallus gallus domesticus, and the production of replication-deficient, recombinant adenovirus vectors expressing these avian LC3s tagged with EGFP and FLAG-mCherry. An additional recombinant adenovirus expressing EGFP-tagged LC3B containing a G120A mutation was also generated. These vectors can be used as tools to visualize autophagosome formation and fusion with endosomes/lysosomes in avian cells and provide a valuable resource for studying autophagy in avian cells. We have used them to study autophagy during replication of infectious bronchitis virus (IBV). IBV induced autophagic signaling in mammalian Vero cells but not primary avian chick kidney cells or the avian DF1 cell line. Furthermore, induction or inhibition of autophagy did not affect IBV replication, suggesting that classical autophagy may not be important for virus replication. However, expression of IBV nonstructural protein 6 alone did induce autophagic signaling in avian cells, as seen previously in mammalian cells. This may suggest that IBV can inhibit or control autophagy in avian cells, although IBV did not appear to inhibit autophagy induced by starvation or rapamycin treatment. 相似文献
13.
Aiqin Sun Jing Wei Chandra Childress John H. Shaw IV Ke Peng Genbao Shao 《Autophagy》2017,13(3):522-537
The MAP1LC3/LC3 family plays an essential role in autophagosomal biogenesis and transport. In this report, we show that the HECT family E3 ubiquitin ligase NEDD4 interacts with LC3 and is involved in autophagosomal biogenesis. NEDD4 binds to LC3 through a conserved WXXL LC3-binding motif in a region between the C2 and the WW2 domains. Knockdown of NEDD4 impaired starvation- or rapamycin-induced activation of autophagy and autophagosomal biogenesis and caused aggregates of the LC3 puncta colocalized with endoplasmic reticulum membrane markers. Electron microscopy observed gigantic deformed mitochondria in NEDD4 knockdown cells, suggesting that NEDD4 might function in mitophagy. Furthermore, SQSTM1 is ubiquitinated by NEDD4 while LC3 functions as an activator of NEDD4 ligase activity. Taken together, our studies define an important role of NEDD4 in regulation of autophagy. 相似文献
14.
【目的】昆虫脂肪体是物质合成代谢、先天免疫的重要器官。ATG8蛋白的亚细胞定位是细胞自噬的主要指标之一,细胞核皱缩是细胞凋亡的形态标记之一,目前家蚕 Bombyx mori 中尚未在蜕皮和变态发育进程中对BmATG8蛋白的细胞生物学变化进行观察。本研究旨在同时检测家蚕脂肪体细胞中BmATG8蛋白亚细胞定位和细胞核皱缩的时空变化,研究蜕皮激素(20E)信号对两者的调控作用。【方法】利用免疫荧光和Hoechst染色方法,分别在家蚕幼虫4龄第2天至预蛹第2天、5龄第2天幼虫注射20E (10 μg/头)后以及对游走期幼虫脂肪体中20E受体基因 usp 进行RNAi后,检测家蚕脂肪体中BmATG8蛋白定位和细胞核形态变化。【结果】在家蚕幼虫蜕皮和幼虫-蛹变态发育时期,BmATG8蛋白高水平存在于脂肪体细胞中,同时细胞核发生皱缩。在正常摄食时期,20E处理(10 μg/头)能够诱导细胞中大量出现BmATG8蛋白且存在于细胞质中并诱导细胞核皱缩。对 usp 基因进行RNAi后,脂肪体细胞内的BmATG8蛋白显著减少,同时细胞核皱缩减弱。【结论】家蚕BmATG8蛋白不仅在幼虫-蛹变态时期细胞质中大量存在,而且在幼虫蜕皮时期也大量表达,与细胞核的皱缩同时出现,BmATG8蛋白在细胞质中的定位与细胞核皱缩两者均受到 20E信号通路的调控。本研究为BmATG8蛋白功能及其调控机制的深入研究提供了重要的科学依据。 相似文献
15.
The POU-domain protein Pdm3 regulates axonal targeting of R neurons in the Drosophila ellipsoid body
The ability of axons to project correctly to the target is essential for the formation of complex neural networks. The intrinsic regulation of this process is still unclear. Here, we show that POU domain motif 3 (Pdm3) is required in ring (R) neurons to control precise axon targeting to the Drosophila ellipsoid body (EB). Pdm3 is expressed in neurons of the central nervous system in larvae and adults and required for the normal development of the EB of the central complex in the adult brain. The normal EB structure is abolished in pdm3 mutants, and this phenotype is rescued by pdm3 expression in R neurons, suggesting that the defect in axonal targeting of R neurons is the major cause in EB malformation in pdm3 mutants. We show that cell fate determination, dendritic arborization, and initial axon projection of R neurons are normal while the axonal targeting to the EB is defective in pdm3 mutants. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2012 相似文献
16.
17.
18.
LC3 is a marker protein that is involved in the formation of autophagosomes and autolysosomes, which are usually characterized and monitored by fluorescence microscopy using fluorescent protein-tagged LC3 probes (FP-LC3). FP-LC3 and even endogenous LC3 can also be incorporated into intracellular protein aggregates in an autophagy-independent manner. However, the dynamic process of LC3 associated with autophagosomes and autolysosomes or protein aggregates in living cells remains unclear. Here, we explored the dynamic properties of the two types of FP-LC3-containing puncta using fluorescence microscopy techniques, including fluorescence recovery after photobleaching (FRAP) and fluorescence resonance energy transfer (FRET). The FRAP data revealed that the fluorescent signals of FP-LC3 attached to phagophores or in mature autolysosomes showed either minimal or no recovery after photobleaching, indicating that the dissociation of LC3 from the autophagosome membranes may be very slow. In contrast, FP-LC3 in the protein aggregates exhibited nearly complete recovery (more than 80%) and rapid kinetics of association and dissociation (half-time < 1 sec), indicating a rapid exchange occurs between the aggregates and cytoplasmic pool, which is mainly due to the transient interaction of LC3 and SQSTM1/p62. Based on the distinct dynamic properties of FP-LC3 in the two types of punctate structures, we provide a convenient and useful FRAP approach to distinguish autophagosomes from LC3-involved protein aggregates in living cells. Using this approach, we find the FP-LC3 puncta that adjacently localized to the phagophore marker ATG16L1 were protein aggregate-associated LC3 puncta, which exhibited different kinetics compared with that of autophagic structures. 相似文献
19.
Concurrence of autophagy with apoptosis in alveolar epithelial cells contributes to chronic pulmonary toxicity induced by methamphetamine 下载免费PDF全文
Yun Wang Yu‐Han Gu Li‐Ye Liang Ming Liu Bin Jiang Mei‐Jia Zhu Xin Wang Lin Shi 《Cell proliferation》2018,51(5)
Objectives
Methamphetamine (MA) abuse evokes pulmonary toxicity. The aim of our study is to investigate if autophagy is induced by MA and if autophagy‐initiated apoptosis in alveolar epithelial cells is involved in MA‐induced chronic pulmonary toxicity.Materials and Methods
The rats in Control group and MA group were tested by Doppler and HE staining. The alveolar epithelial cells were treated with MA, following by western blot, RT‐PCR and immunofluorescence assay.Results
Chronic exposure to MA resulted in lower growth ratio of weight and in higher heart rate and peak blood flow velocity of the main pulmonary artery of rats. MA induced infiltration of inflammatory cells in lungs, more compact lung parenchyma, thickened alveolar septum and reduction in the number of alveolar sacs. In alveolar epithelial cells, the autophagy marker LC3 and per cent of cells containing LC3‐positive autophagosome were significantly increased. MA dose dependently suppressed the phosphorylation of mTOR to inactivate mTOR, elicited autophagy regulatory proteins LC3 and Beclin‐1, accelerated the transformation from LC3 I to LC3 II and initiated apoptosis by decreasing Bcl‐2 and increasing Bax, Bax/Bcl‐2 and cleaved Caspase 3. The above results suggest that sustained autophagy was induced by long‐term exposure to MA and that the increased Beclin‐1 autophagy initiated apoptosis in alveolar epithelial cells.Conclusions
Concurrence of autophagy with apoptosis in alveolar epithelial cells contributes to chronic pulmonary toxicity induced by MA.20.
Vidaković M Grdović N Quesada P Bode J Poznanović G 《Journal of cellular biochemistry》2004,93(6):1155-1168
The distribution of poly(ADP-ribose) polymerase-1 (PARP-1) over different nuclear compartments was studied by nuclear fractionation procedures and Western analysis revealing a prominent role of the nuclear matrix. This structure is operationally defined by the solubility properties of the A- and B-type lamins under defined experimental conditions. We consistently observed that most of the nuclear matrix-associated PARP-1 partitioned, in an active form, with the insoluble, lamin-enriched protein fractions that were prepared by a variety of established biochemical procedures. These PARP-1-protein interactions resisted salt extraction, disulfide reduction, RNase and DNase digestion. An inherent ability of PARP-1 to reassemble with the lamins became evident after a cycle of solubilization/dialysis using either urea or Triton X-100 and disulfide reduction, indicating that these interactions were dominated by hydrophobic forces. Together with in vivo crosslinking and co-immunoprecipitation experiments our results show that the lamins are prominent PARP-1-binding partners which could contribute to the functional sequestration of the enzyme on the nuclear matrix. 相似文献