首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Theory predicts that animals should prefer habitats where their fitness is maximized but some mistakenly select habitats where their fitness is compromised, that is, ecological traps. Understanding why this happens requires knowledge of the habitat selection cues animals use, the habitats they prefer and why, and the fitness costs of habitat selection decisions. We conducted experiments with a freshwater insect, the non‐biting midge Chironomus tepperi to ask: (a) whether females respond to potential oviposition cues, (b) to explore whether oviposition is adaptive in relation to metal pollution and conductivity, and (c) whether individuals raised in poor quality sites are more likely to breed in similarly poor locations. We found the following: (a) females responded to some cues, especially conductivity and conspecifics, (b) females preferred sites with higher concentrations of bioavailable metals but suffered no consequences to egg/larval survival, (c) females showed some avoidance of high conductivities, but they still laid eggs resulting in reduced egg hatching, larval survival, and adult emergence, and (d) preferences were independent of natal environment. Our results show that C. tepperi is susceptible to ecological traps, depending on life stage and the relative differences in conductivities among potential oviposition sites. Our results highlight that (a) the fitness outcomes of habitat selection need to be assessed across the life cycle and (b) the relative differences in preference/suitability of habitats need to be considered in ecological trap research. This information can help determine why habitat preferences and their fitness consequences differ among species, which is critical for determining which species are susceptible to ecological traps.  相似文献   

2.
1.?Research on habitat selection has focused on the role of vegetative and geologic characteristics or antagonistic behavioural interactions. 2.?Conspecifics can confer information about habitat quality and provide positive density-dependent effects, suggesting habitat selection in response to the presence of conspecifics can be an adaptive strategy. 3.?We conducted a manipulative field experiment investigating use of conspecific location cues for habitat selection and consequent reproductive outcomes for the endangered golden-cheeked warbler (Setophaga chrysoparia). We investigated the response in woodlands across a range of habitat canopy cover conditions typically considered suitable to unsuitable and using vocal cues presented during two time periods: pre-settlement and post-breeding. 4.?Warblers showed a strong response to both pre-settlement and post-breeding conspecific cues. Territory density was greater than four times higher in treatment sample units than controls. The magnitude of response was higher for cues presented during the pre-settlement period. Positive response to conspecific cues was consistent even in previously unoccupied areas with low canopy cover typically considered unsuitable, resulting in aggregations of warblers in areas generally not considered potential habitat. 5.?Pairing and reproductive success of males was not correlated with canopy cover, as commonly thought. Pairing success and fledging success increased with increasing territory density suggesting that conspecific density may be more important for habitat selection decisions than the canopy cover conditions typically thought to be most important. These results suggest the range of habitat within which birds can perform successfully may be greater than is typically observed. 6.?Our results suggest the territory selection process may not be substantially influenced by competition in some systems. Settlement in response to conspecific cues produced aggregations within larger areas of similar vegetative characteristics. Understanding what cues drive habitat selection decisions and whether these cues are correlated with habitat quality is critical for conserving fitness-enhancing habitats, avoiding creation of ecological traps, generating accurate predictions of species distributions and understanding how occupancy relates to habitat suitability.  相似文献   

3.
Variation in habitat quality among territories within a heterogeneous patch should influence reproductive success of territory owners. Further, territory settlement order following an ideal despotic distribution (IDD) should predict the fitness of occupants if territory selection is adaptive. We recorded settlement order and monitored nests in territories occupied by individually marked Bell's vireos Vireo bellii bellii across a range of shrubland habitats in central Missouri, USA. We used an information theoretic approach to evaluate multiple hypotheses regarding the relationship between territory settlement order and seasonal territory productivity (productivity), which we define as the number of young fledged from all nest attempts in a territory. Territory settlement order and arrival date were not analogous and later arriving males displaced early settlers in 13 of 49 territories. Settlement order and lay date together were the best predictors of a territory's productivity; productivity decreased 2.08 young from earliest to latest settlement rank and lay date. Males that defended the same territory in successive years occupied territories with earlier settlement dates, but we found little evidence that age or prior ownership influenced productivity. Territory selection by male Bell's vireos was adaptive because males preferred to settle in territories that had high seasonal offspring production, but even though settlement rank was linked to territory quality, high productivity was only realized on high quality territory when also linked to early nest initiation date. While settlement rank was related to territory quality, obtaining a high quality territory had to be combined with early nest initiation to maximize productivity. We found support for the IDD hypothesis because the highest quality territories, (i.e. most productive), were settled earlier. Research that identifies high quality habitat by linking individual fitness with habitat characteristics may elucidate the importance of habitat quality, individual experience and temporal factors to productivity of Bell's vireos.  相似文献   

4.
Songbirds that follow a conspecific attraction strategy in the habitat selection process prefer to settle in habitat patches already occupied by other individuals. This largely affects the patterns of their spatio-temporal distribution and leads to clustered breeding. Although making informed settlement decisions is expected to be beneficial for individuals, such territory clusters may potentially provide additional fitness benefits (e.g., through the dilution effect) or costs (e.g., possibly facilitating nest localization if predators respond functionally to prey distribution). Thus, we hypothesized that the fitness consequences of following a conspecific attraction strategy may largely depend on the composition of the predator community. We developed an agent-based model in which we simulated the settling behavior of birds that use a conspecific attraction strategy and breed in a multi-predator landscape with predators that exhibited different foraging strategies. Moreover, we investigated whether Bayesian updating of prior settlement decisions according to the perceived predation risk may improve the fitness of birds that rely on conspecific cues. Our results provide evidence that the fitness consequences of conspecific attraction are predation-related. We found that in landscapes dominated by predators able to respond functionally to prey distribution, clustered breeding led to fitness costs. However, this cost could be reduced if birds performed Bayesian updating of prior settlement decisions and perceived nesting with too many neighbors as a threat. Our results did not support the hypothesis that in landscapes dominated by incidental predators, clustered breeding as a byproduct of conspecific attraction provides fitness benefits through the dilution effect. We suggest that this may be due to the spatial scale of songbirds’ aggregative behavior. In general, we provide evidence that when considering the fitness consequences of conspecific attraction for songbirds, one should expect a trade-off between the benefits of making informed decisions and the costs of clustering.  相似文献   

5.
Whether general patterns of signal evolution can be explained by selection for signal efficacy (detectability) has yet to be established. To establish the importance of signal efficacy requires evidence that both signals and their detectability to receivers have evolved in response to habitat shifts in a predictable fashion. Here, we test whether habitat structure has predictable effects on the evolution of male and female display coloration in 21 lineages of African dwarf chameleon (Bradypodion), based on a phylogenetic comparative analysis. We used quantitative measures of display coloration and estimated signal detectability as the contrast of those colors among body regions or against the background vegetation as perceived by the chameleon visual system. Both male and female display colors varied predictably with different aspects of habitat structure. In several (but not all) instances, habitat-associated shifts in display coloration resulted in habitat-associated variation in detectability. While males exhibit a remarkable variety of colors and patterns, female display coloration is highly conserved, consisting in all populations of contrasting dark and light elements. This color pattern may maximize detectability across all habitat types, potentially explaining female conservatism. Overall, our results support the view that selection for signal efficacy plays an important role in the evolution of animal signals.  相似文献   

6.
Choice of breeding habitat can have a major impact on fitness. Sensitivity of habitat choice to environmental cues predicting reproductive success, such as density of harmful enemy species, should be favored by natural selection. Yet, experimental tests of this idea are in short supply. Brown-headed cowbirds Molothrus ater commonly reduce reproductive success of a wide diversity of birds by parasitizing their nests. We used song playbacks to simulate high cowbird density and tested whether cowbird hosts avoid such areas in habitat selection. Host species that made settlement decisions during manipulations were significantly less abundant in the cowbird treatment as a group. In contrast, hosts that settled before manipulations started and non-host species did not respond to treatments. These results suggest that hosts of cowbirds can use vocal cues to assess parasitism risk among potential habitat patches and avoid high risk habitats. This can affect community structure by affecting habitat choices of species with differential vulnerability.  相似文献   

7.
Social information use in songbird habitat selection commonly involves a conspecific attraction strategy. Individuals copy the breeding‐site choices of conspecifics, that is, bias their own settlement decisions towards sites (tracts of spatially limited habitat with similar structure) already occupied by others. In order to be adaptive, social information use has to be discriminative. Especially the decisions of good quality individuals, i.e. measuring high at observable fitness correlates, should be copied more frequently than those of poor quality individuals. It is unknown, however, whether songbirds discriminatively use conspecific presence by evaluating the quality of information providers in habitat selection. We experimentally tested whether wood warblers Phylloscopus sibilatrix selectively copied settlement decisions of conspecifics in relation to the quality of observed individuals. We also tested whether the use of social cues was influenced by the population density at a particular site in the preceding year. We found that wood warblers selectively used intraspecific social information, but in a pattern opposite to that expected based on existing hypotheses. Wood warblers copied breeding‐site choices of poor quality conspecifics and despite temporary attraction to sites where the presence of good quality individuals was simulated, they did not ultimately settle near these individuals. Population density in the preceding year did not influence settlement patterns. We argue that when making settlement decisions, wood warblers assessed the expected level of local intraspecific competition and selectively copied breeding‐site choices of conspecifics or refused to settle, depending on competitive abilities of observed individuals. This adds a novel aspect to the patterns and processes of social information use proposed thus far, and provides support for the predicted negative effect of intraspecific competition on benefit of information. Moreover, it seems that habitat selection in wood warblers is a complex decision‐making process, in which initial decisions are adjusted after acquiring more accurate information. Synthesis Social information use in songbird habitat selection commonly involves copying the breeding‐site choices of conspecifics (so‐called conspecific attraction). To be adaptive, this strategy has to be discriminative, but almost no empirical studies have tested this assertion. Our study shows that birds may selectively use social information by copying settlement decisions of poor quality conspecifics, but avoid settling near good quality individuals, likely because of their high competitive abilities. This decision‐making pattern supports the predicted, yet not experimentally tested, tradeoff between information value and cost of competition in social information use. Our study highlights also that the use of social cues in settlement decisions may be both positively and negatively biased.  相似文献   

8.
Understanding how animals weigh habitat features, exposure to predators and access to resources is important to determining their life history and distribution across the landscape. For example, when predators accumulate in structurally complex habitats, they face an environment with different competitive interactions, foraging opportunities and predatory risks. The wolf spider Pardosa milvina inhabits the soil surface of highly disturbed habitats such as agricultural fields throughout eastern North America. Pardosa displays effective antipredator behavior in the presence of chemical cues produced by a larger coexisting wolf spider, Hogna helluo . We used those cues to simulate predation risk in laboratory and field experiments designed to test the effects of habitat substrate and predation risk on site selection and prey consumption of Pardosa . In general, Pardosa preferred more complex substrates over bare dirt but those preferences were eliminated or reversed when cues from Hogna were present. Feeding trials revealed that substrate alone had few effects on Pardosa prey consumption, which we measured by documenting the change in the abdomen width. Although the presence of Hogna cues reduced prey consumption overall in field feeding trials, the negative effect of predation risk on prey consumption was only observed in grass and bare dirt substrates in the laboratory. We also found that prey capture was negatively affected by habitat complexity for both spider species but that same complexity offered Pardosa protection from predation by Hogna. This study provides insight into how two predator species interact to balance site selection and feeding in order to avoid predation. Shifts in foraging and distributional patterns of predators can have profound implications for their role in the food web.  相似文献   

9.
In human-altered environments, organisms may preferentially settle in poor-quality habitats where fitness returns are lower relative to available higher-quality habitats. Such ecological trapping is due to a mismatch between the cues used during habitat selection and the habitat quality. Maladaptive settlement decisions may occur when organisms are time-constrained and have to rapidly evaluate habitat quality based on incomplete knowledge of the resources and conditions that will be available later in the season. During a three-year study, we examined settlement decision-making in the long-distance migratory, open-habitat bird, the Red-backed shrike (Lanius collurio), as a response to recent land-use changes. In Northwest Europe, the shrikes typically breed in open areas under a management regime of extensive farming. In recent decades, Spruce forests have been increasingly managed with large-size cutblocks in even-aged plantations, thereby producing early-successional vegetation areas that are also colonised by the species. Farmland and open areas in forests create mosaics of two different types of habitats that are now occupied by the shrikes. We examined redundant measures of habitat preference (order of settlement after migration and distribution of dominant individuals) and several reproductive performance parameters in both habitat types to investigate whether habitat preference is in line with habitat quality. Territorial males exhibited a clear preference for the recently created open areas in forests with higher-quality males settling in this habitat type earlier. Reproductive performance was, however, higher in farmland, with higher nest success, offspring quantity, and quality compared to open areas in forests. The results showed strong among-year consistency and we can therefore exclude a transient situation. This study demonstrates a case of maladaptive habitat selection in a farmland bird expanding its breeding range to human-created open habitats in plantations. We discuss the reasons that could explain this decision-making and the possible consequences for the population dynamics and persistence.  相似文献   

10.
Rapid anthropogenic habitat changes can lead to non‐ideal habitat use by animals, often resulting in lower fitness and population declines. An extreme case of use and fitness mismatch is an ecological trap where habitat quality cues are disjointed from the true quality of the habitat. Species primarily associated with anthropogenically altered habitat, such as red‐headed woodpeckers (Melanerpes erythrocephalus), may be especially vulnerable to use and fitness mismatch as they encounter novel environmental challenges. We investigated multi‐scale habitat use and nesting success of red‐headed woodpeckers to assess their vulnerability to mismatches between use and fitness as a result of non‐ideal habitat use across multiple scales. We found that habitat characteristics that promote feeding potential such as canopy openness and greater dead limb length appeared paramount and were consistent in use across several spatial scales although reproductive fitness suffered. This contrasts with the assumption that habitat use by nesting birds should instead favor predation avoidance at smaller scales to improve reproductive fitness and suggests that maladaptive, food‐based habitat use by red‐headed woodpeckers in southern Ontario may result in ecological traps for the species. Whether due to poor habitat choices or costly ones in favor of feeding potential, it is vital to consider this behavior in conservation and management plans for this and similar species. We suggest multi‐scale habitat use studies that consider fitness outcomes are critical for species‐at‐risk in human‐modified landscapes.  相似文献   

11.
Theoretical models of habitat selection often incorporate negative density dependence. Despite strong negative density‐dependent effects on habitat selection, more recent studies indicate that animals settle near members of their own (conspecific) and other species (heterospecific) when selecting habitat with social cues. Social cue use for habitat selection is particularly common among songbirds, but few studies have investigated if songbirds use social cues to assess conspecific or heterospecific density (as opposed to just presence/absence) when making settlement decisions. We conducted a playback experiment to evaluate if yellow warblers (Setophaga petechia) and willow flycatchers (Empidonax traillii), two potential competitors for breeding habitat, use social cues to assess density (conspecific for warblers and heterospecific for flycatchers) when selecting breeding locations at two spatial scales. We simulated yellow warbler density to be high or low at multiple treatment plots (3.14 ha) with song playback and then evaluated settlement decisions by comparing yellow warbler and willow flycatcher abundances across plots (broad‐scale habitat selection) and individual space use within plots (fine‐scale territory establishment). Yellow warbler density treatments did not affect habitat selection by yellow warblers at the broad scale, but caused individuals to cluster territories at high‐density treatments. Willow flycatchers were most abundant at high‐density treatment plots, but yellow warbler density treatments did not affect territory locations. The results indicate that perceived density affects the habitat selection process for both conspecifics and heterospecifics.  相似文献   

12.
Emergent properties of conspecific attraction in fragmented landscapes   总被引:1,自引:0,他引:1  
Attraction to conspecifics may have wide-ranging implications for habitat selection and metapopulation theory, yet little is known about the process of attraction and its effects relative to other habitat selection strategies. Using individual-based simulations, I investigated the emergent properties of conspecific attraction during habitat selection on survival, fecundity, short-term fitness (survival x fecundity), and distributions in fragmented landscapes. I simulated conspecific attraction during searching and settlement decisions and compared attraction with random, habitat-based (searching for the presence of habitat), and habitat quality sampling strategies (searching for and settling in high-quality habitat). Conspecific attraction during searching or settlement decisions had different consequences for animals: attraction while searching increased survival by decreasing time spent in nonsuitable habitat, whereas attraction during settlement increased fecundity by aggregating animals in high-quality habitats. Habitat-based sampling did not improve fitness over attraction, but directly sampling habitat quality resulted in the highest short-term fitness among strategies. These results suggest that attraction can improve fitness when animals cannot directly assess habitat quality. Interestingly, conspecific attraction influenced distributions by generating patch size effects and weak edge effects, highlighting that attraction is one potential, yet previously unappreciated, mechanism to explain the widespread patterns of animal sensitivity to habitat fragmentation.  相似文献   

13.
Animals are expected to select a breeding habitat using cues that should reflect, directly or not, the fitness outcome of the different habitat options. However, human‐induced environmental changes can alter the relationships between habitat characteristics and their fitness consequences, leading to maladaptive habitat choices. The most severe case of such nonideal habitat selection is the ecological trap, which occurs when individuals prefer to settle in poor‐quality habitats while better ones are available. Here, we studied the adaptiveness of nest box selection in a tree swallow (Tachycineta bicolor) population breeding over a 10‐year period in a network of 400 nest boxes distributed along a gradient of agricultural intensification in southern Québec, Canada. We first examined the effects of multiple environmental and social habitat characteristics on nest box preference to identify potential settlement cues. We then assessed the links between those cues and habitat quality as defined by the reproductive performance of individuals that settled early or late in nest boxes. We found that tree swallows preferred nesting in open habitats with high cover of perennial forage crops, high spring insect biomass, and high density of house sparrows (Passer domesticus), their main competitors for nest sites. They also preferred nesting where the density of breeders and their mean number of fledglings during the previous year were high. However, we detected mismatches between preference and habitat quality for several environmental variables. The density of competitors and conspecific social information showed severe mismatches, as their relationships to preference and breeding success went in opposite direction under certain circumstances. Spring food availability and agricultural landscape context, while related to preferences, were not related to breeding success. Overall, our study emphasizes the complexity of habitat selection behavior and provides evidence that multiple mechanisms may potentially lead to an ecological trap in farmlands.  相似文献   

14.
Habitat selection is a complex process, and animals may change their habitat selection over time. However, we have a poor understanding of temporal variation in habitat selection of endangered giant pandas (Ailuropoda melanoleuca), which has limited the development of conservation strategies for them. This study examined giant panda habitat selection in three stages of the past two decades (2001–2002, 2011–2012, and 2019–2020) in the Daxiangling Mountains, southwestern China. We applied the resource selection function to estimate the probability of species occurrence with five limiting habitat factors, i.e., elevation, slope, aspect, tree diameter at breast height, and bamboo cover. We found that giant pandas consistently selected for south- and west-facing slopes with mid-elevations and large trees in the three stages. However, there were shifts back-and-forth in the choice between higher and lower elevations and between higher and lower bamboo cover across the three stages. We suggest that the giant panda habitat selection had important consequences for gaining the high availability of palatable bamboo and good shelters. The back-and-forth shifts might be the result of changes in the type, spatial distribution, and intensity of human disturbance. Our study provides insights for improving our understanding and approaches for quantifying temporal variation in habitat selection in giant pandas and other species, suggesting that adaptive conservation and management in response to changing environments is needed.  相似文献   

15.
To maximize fitness, organisms must assess and select suitable habitat. Early research studying birds suggested that organisms consider primarily vegetation structural cues in their habitat choices. We show that experimental exposure to singing in the post-breeding period provides a social cue that is used for habitat selection the following year by a migrant songbird, the black-throated blue warbler (Dendroica caerulescens). Our experimental social cues coerced individuals to adopt territories in areas of very poor habitat quality where individuals typically do not occur. This indicates that social information can override typical associations with vegetation structure. We demonstrate that a strong settlement response was elicited because post-breeding song at a site is highly correlated with reproductive success. These results constitute a previously undocumented, but highly parsimonious mechanism for the inadvertent transfer of reproductive (public) information from successful breeders to dispersers. We hypothesize that post-breeding song is a pervasive and reliable cue for species that communicate vocally, inhabit temporally autocorrelated environments, produce young asynchronously and/or abandon territories after reproductive failure.  相似文献   

16.
Adaptive plasticity is expected to be important when the grain of environmental variation is encompassed in offspring dispersal distance. We investigated patterns of local adaptation, selection and plasticity in an association of plant morphology with fine-scale habitat shifts from oak canopy understory to adjacent grassland habitat in Claytonia perfoliata. Populations from beneath the canopy of oak trees were >90 % broad leaved and large seeded, while plants from adjacent grassland habitat were >90 % linear-leaved and small seeded. In a 2-year study, we used reciprocal transplants and phenotypic selection analysis to investigate local adaptation, selection, plasticity and maternal effects in this trait-environment association. Transgenerational effects were studied by planting offspring of inbred maternal families grown in both environments across the same environments in the second year. Reciprocal transplants revealed local adaptation to habitat type: broad-leaved forms had higher fitness in oak understory and linear-leaved plants had higher fitness in open grassland habitat. Phenotypic selection analyses indicated selection for narrower leaves and lower SLA in open habitat, and selection for broad leaves and intermediate values of SLA in understory. Both plant morphs exhibited plastic responses in traits in the same direction as selection on traits (narrower leaves and lower SLA in open habitat) suggesting that plasticity is adaptive. We detected an adaptive transgenerational effect in which maternal environment influenced offspring fitness; offspring of grassland-reared plants had higher fitness than understory-reared plants when grown in grassland. We did not detect costs of plasticity, but did find a positive association between leaf shape plasticity and fitness in linear-leaved plants in grassland habitat. Together, these findings indicate that fixed differences in trait values corresponding to selection across habitat contribute to local adaptation, but that plasticity and maternal environmental effects may be favored through promotion of survival across heterogeneous environments.  相似文献   

17.
Determining how animals respond to differences in resource availabilities across spatiotemporal extents is critical to our understanding of organism distributions. Variations in resource distribution leading to changes in spatial arrangements across landscapes are indicative of a habitat functional response. Our goal was to assess how resource availabilities influenced both second‐order (i.e., home ranging behavior) and third‐order (i.e., habitat or resource selection) selection by feral pigs (Sus scrofa) in an agricultural landscape. We defined agriculturally based seasons to estimate home range characteristics using autocorrelated kernel density estimation within each season. We then modeled home range size as a function of resource availability (i.e., resource selection analyses) to determine whether individual behaviors were predicted by shifts in home ranging behavior. Both home range analyses and resource selection analyses indicated seasonal differences in selection for agricultural resources as availabilities changed, suggesting second‐ and third‐order selection is mechanistically linked through a habitat functional response.  相似文献   

18.
The ideal free distribution assumes that animals select habitats that are beneficial to their fitness. When the needs of dependent offspring differ from those of the parent, ideal habitat selection patterns could vary with the presence or absence of offspring. We test whether habitat selection depends on reproductive state due to top‐down or bottom‐up influences on the fitness of woodland caribou (Rangifer tarandus caribou), a threatened, wide‐ranging herbivore. We combined established methods of fitting resource and step selection functions derived from locations of collared animals in Ontario with newer techniques, including identifying calf status from video collar footage and seasonal habitat selection analysis through latent selection difference functions. We found that females with calves avoided predation risk and proximity to roads more strongly than females without calves within their seasonal ranges. At the local scale, females with calves avoided predation more strongly than females without calves. Females with calves increased predation avoidance but not selection for food availability upon calving, whereas females without calves increased selection for food availability across the same season. These behavioral responses suggest that habitat selection by woodland caribou is influenced by reproductive state, such that females with calves at heel use habitat selection to offset the increased vulnerability of their offspring to predation risk.  相似文献   

19.
Recent insights from habitat selection theory may help conservation managers encourage released animals to settle in appropriate habitats. By all measures, success rates for captive–release and translocation programs are low, and have shown few signs of improvement in recent years. We consider situations in which free-living dispersers prefer new habitats that contain stimuli comparable to those in their natal habitat, a phenomenon called natal habitat preference induction (NHPI). Theory predicts NHPI when dispersers experienced favorable conditions in their natal habitat, and have difficulty estimating the quality of unfamiliar habitats. NHPI is especially likely to occur when performance in a given habitat is enhanced if an animal developed in that same habitat type. Animals exhibiting NHPI are expected to rely on conspicuous cues that can be quickly and easily detected during search, and to prefer new habitats possessing cues that match those encountered in their natal habitat.A major obstacle to successful relocations is that newly released animals often reject the habitat near the release site and rapidly travel long distances away before settling. An NHPI perspective argues that long-distance movements away from release sites occur because releasees prefer to settle in familiar types of habitat, and reject novel areas lacking cues similar to those in their habitat of origin. Similarly, a preference by releasees for familiar cues may encourage them to seek out inappropriate, low quality habitats following release at a new location. We review evidence from a number of studies indicating that problems with habitat selection behavior compromise conservation efforts, and provide recommendations that may encourage animals to “feel more at home” in post-release habitats.  相似文献   

20.
The life cycle of many sessile marine invertebrates includes a dispersive planktonic larval stage whose ability to find a suitable habitat in which to settle and transform into benthic adults is crucial to maximize fitness. To facilitate this process, invertebrate larvae commonly respond to habitat-related chemical cues to guide the search for an appropriate environment. Furthermore, small-scale hydrodynamic conditions affect dispersal of chemical cues, as well as swimming behavior of invertebrate larvae and encounter with potential habitats. Shipworms within the family Teredinidae are dependent on terrestrially derived wood in order to complete their life cycle, but very little is known about the cues and processes that promote settlement. We investigated the potential for remote detection of settling substrate via waterborne chemical cues in teredinid larvae through a combination of empirical field and laboratory flume experiments. Natural populations of teredinid larvae were significantly more abundant close to wooden structures enclosed in plankton net compared to empty control nets, clearly showing that shipworm larvae can sense and respond to chemical cues associated with suitable settling substrate in the field. However, the flume experiments, using ecologically relevant flow velocities, showed that the boundary layer around experimental wooden panels was thin and that the mean flow velocity exceeded larval swimming velocity approximately 5 mm (≈ 25 larval body lengths) from the panel surface. Therefore, we conclude that the scope for remote detection of waterborne cues is limited and that the likely explanation for the higher abundance of shipworm larvae associated with the wooden panels in the field is a response to a cue during or after attachment on, or very near, the substrate. Waterborne cues probably guide the larva in its decision to remain attached and settle, or to detach and continue swimming and drifting until the next encounter with a solid substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号