首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The sequence KLVFFAE (Aβ16–22) in Alzheimer's β‐amyloid is thought to be a core β‐structure that could act as a template for folding other parts of the polypeptide or molecules into fibrillar assemblies rich in β‐sheet. To elucidate the mechanism of the initial folding process, we undertook combined X‐ray fiber/powder diffraction and infrared (IR) spectroscopy to analyze lyophilized Aβ16–22 and solubilized/dried peptide containing nitrile probes at F19 and/or F20. Solubilized/dried wild‐type (WT) Aβ16–22 and the peptide containing cyanophenylalanine at F19 (19CN) or at F20 (20CN) gave fiber patterns consistent with slab‐like β‐crystallites that were cylindrically averaged around the axis parallel to the polypeptide chain direction. The WT and 19CN assemblies showed 30‐Å period arrays arising from the stacking of the slabs along the peptide chain direction, whereas the 20CN assemblies lacked any such stacking. The electron density projection along the peptide chain direction indicated similar side‐chain dispositions for WT and 20CN, but not for 19CN. These X‐ray results and modeling imply that in the assembly of WT Aβ16–22 the F19 side chain is localized within the intersheet space and is involved in hydrophobic contact with amino acids across the intersheet space, whereas the F20 side chain localized near the slab surface is less important for the intersheet interaction, but involved in slab stacking. IR observations for the same peptides in dilute solution showed a greater degree of hydrogen bonding for the nitrile groups in 20CN than in 19CN, supporting this interpretation. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
The capacity to form β‐sheet structure and to self‐organize into amyloid aggregates is a property shared by many proteins. Severe neurodegenerative pathologies such as Alzheimer's disease are thought to involve the interaction of amyloidogenic protein oligomers with neuronal membranes. To understand the experimentally observed catalysis of amyloid formation by lipid membranes and other water‐hydrophobic interfaces, we examine the physico‐chemical basis of peptide adsorption and aggregation in a model membrane using atomistic molecular simulations. Blocked octapeptides with simple, repetitive sequences, (Gly‐Ala)4, and (Gly‐Val)4, are used as models of β‐sheet‐forming polypeptide chains found in the core of amyloid fibrils. In the presence of an n‐octane phase mimicking the core of lipid membranes, the peptides spontaneously partition at the octane‐water interface. The adsorption of nonpolar sidechains displaces the peptides' conformational equilibrium from a heterogeneous ensemble characterized by a high degree of structural disorder toward a more ordered ensemble favoring β‐hairpins and elongated β‐strands. At the interface, peptides spontaneously aggregate and rapidly evolve β‐sheet structure on a 10 to 100 ns time scale, while aqueous aggregates remain amorphous. Catalysis of β‐sheet formation results from the combination of the hydrophobic effect and of reduced conformational entropy of the polypeptide chain. While the former drives interfacial partition and displaces the conformational equilibrium of monomeric peptides, the planar interface further facilitates β‐sheet organization by increasing peptide concentration and reducing the dimensionality of self‐assembly from three to two. These findings suggest a general mechanism for the formation of β‐sheets on the surface of globular proteins and for amyloid self‐organization at hydrophobic interfaces. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
With the development of various nanomaterial expected to be used in biomedical fields, it is more important to evaluate and understand their potential effects on biological system. In this work, two proteins with different structure, Villin Headpiece (HP35) with α‐helix structure and protofibrils Aβ1‐42 with five β‐strand chains, were selected and their interactions with silicene were studied by means of molecular dynamics (MD) simulation to reveal the potential effect of silicene on the structure and function of biomolecules. The obtained results indicated that silicene could rapidly attract HP35 and Aβ1‐42 fibrils onto the surface to form a stable binding. The adsorption strength was moderate and no significant structural distortion of HP35 and Aβ1‐42 fibrils was observed. Moreover, the strength of calculated the H‐bonds in neighbor chain of Aβ1‐42 fibrils indicated that the mild interactions between silicene and fibrils could regularize the structure of Aβ1‐42 fibrils and stabilize the interactions between five chains of fibrils protein, which might enhance the aggregation of Aβ1‐42 fibrils. This study provides a new insight for understanding the interaction between nanomaterials and biomolecules and moves forward the development of silicene into biomedical fields.  相似文献   

5.
The properties of the amyloid‐β peptide that lead to aggregation associated with Alzheimer's disease are not fully understood. This study aims at identifying conformational differences among four variants of full‐length Aβ42 that are known to display very different aggregation properties. By extensive all‐atom Monte Carlo simulations, we find that a variety of β‐sheet structures with distinct turns are readily accessible for full‐length Aβ42. In the simulations, wild type (WT) Aβ42 preferentially populates two major classes of conformations, either extended with high β‐sheet content or more compact with lower β‐sheet content. The three mutations studied alter the balance between these classes. Strong mutational effects are observed in a region centered at residues 23–26, where WT Aβ42 tends to form a turn. The aggregation‐accelerating E22G mutation associated with early onset of Alzheimer's disease makes this turn region conformationally more diverse, whereas the aggregation‐decelerating F20E mutation has the reverse effect, and the E22G/I31E mutation reduces the turn population. Comparing results for the four Aβ42 variants, we identify specific conformational properties of residues 23–26 that might play a key role in aggregation. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Knowledge of the conformations of a water‐soluble protein bound to a membrane is important for understanding the membrane‐interaction mechanisms and the membrane‐mediated functions of the protein. In this study we applied vacuum‐ultraviolet circular‐dichroism (VUVCD) and linear‐dichroism (LD) spectroscopy to analyze the conformations of α‐lactalbumin (LA), thioredoxin (Trx), and β‐lactoglobulin (LG) bound to phosphatidylglycerol liposomes. The VUVCD analysis coupled with a neural‐network analysis showed that these three proteins have characteristic helix‐rich conformations involving several helical segments, of which two amphiphilic or hydrophobic segments take part in interactions with the liposome. The LD analysis predicted the average orientations of these helix segments on the liposome: two amphiphilic helices parallel to the liposome surface for LA, two hydrophobic helices perpendicular to the liposome surface for Trx, and a hydrophobic helix perpendicular to and an amphiphilic helix parallel to the liposome surface for LG. This sequence‐level information about the secondary structures and orientations was used to formulate interaction models of the three proteins at the membrane surface. This study demonstrates the validity of a combination of VUVCD and LD spectroscopy in conformational analyses of membrane‐binding proteins, which are difficult targets for X‐ray crystallography and nuclear magnetic resonance spectroscopy. Proteins 2016; 84:349–359. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
The polymorphic β‐amyloid lesions present in individuals with Alzheimer's disease are collectively known as cerebral β‐amyloidosis. Amyloid precursor protein (APP) transgenic mouse models similarly develop β‐amyloid depositions that differ in morphology, binding of amyloid conformation‐sensitive dyes, and Aβ40/Aβ42 peptide ratio. To determine the nature of such β‐amyloid morphotypes, β‐amyloid‐containing brain extracts from either aged APP23 brains or aged APPPS1 brains were intracerebrally injected into the hippocampus of young APP23 or APPPS1 transgenic mice. APPPS1 brain extract injected into young APP23 mice induced β‐amyloid deposition with the morphological, conformational, and Aβ40/Aβ42 ratio characteristics of β‐amyloid deposits in aged APPPS1 mice, whereas APP23 brain extract injected into young APP23 mice induced β‐amyloid deposits with the characteristics of β‐amyloid deposits in aged APP23 mice. Injecting the two extracts into the APPPS1 host revealed a similar difference between the induced β‐amyloid deposits, although less prominent, and the induced deposits were similar to the β‐amyloid deposits found in aged APPPS1 hosts. These results indicate that the molecular composition and conformation of aggregated Aβ in APP transgenic mice can be maintained by seeded conversion.  相似文献   

8.
Fibril formation is the hallmark of pathogenesis in Alzheimer's disease and other amyloid disorders caused by conformational alterations leading to the aggregation of soluble monomers. Aβ40 self‐associates to form amyloid fibrils. Its central seven‐residue segment KLVFFAE (Aβ16–22), which is thought to be crucial for fibril formation of the full‐length peptide, forms fibrils even in isolation. Context‐dependent induction of amyloid formation by such sequences in peptides, which otherwise do not have that propensity, is of considerable interest. We have examined the effect of introducing the Aβ16–22 sequence at the N‐terminus of two amphipathic helical 18‐residue peptides Ac‐WYSEMKRNVQRLERAIEE‐am and Ac‐KQLIRFLKRLDRNLWGLA‐am, which have high average hydrophobic moment <μH> values but have net charges of 0 and +4, respectively, at neutral pH. Upon incubation in aqueous buffer, fibril‐like aggregates were discernible by transmission electron microscopy for the peptide with only 0 net charge, which also displayed ThT binding and β‐structure. Although both the sequences have been derived from amphipathic helical segments in globular proteins and possess high average hydrophobic moments, the +4 charge peptide lacks the ability to form fibrils, while the peptide with 0 charge has the tendency to form fibrillar structures. Variation in the net charge and the presence of several glutamic acids in the sequence of the peptide with net charge 0 appear to favor the formation of fibrils when the Aβ16–22 sequence is attached at the N‐terminus. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Deposition of insoluble fibrillar aggregates of β‐amyloid (Aβ) peptides in the brain is a hallmark of Alzheimer's disease. Apart from forming fibrils, these peptides also exist as soluble aggregates. Fibrillar and a variety of nonfibrillar aggregates of Aβ have also been obtained in vitro. Hexafluoroisopropanol (HFIP) has been widely used to dissolve Aβ and other amyloidogenic peptides. In this study, we show that the dissolution of Aβ40, 42, and 43 in HFIP followed by drying results in highly ordered aggregates. Although α‐helical conformation is observed, it is not stable for prolonged periods. Drying after prolonged incubation of Aβ40, 42, and 43 peptides in HFIP leads to structural transition from α‐helical to β‐conformation. The peptides form short fibrous aggregates that further assemble giving rise to highly ordered ring‐like structures. Aβ16–22, a highly amyloidogenic peptide stretch from Aβ, also formed very similar rings when dissolved in HFIP and dried. HFIP could not induce α‐helical conformation in Aβ16–22, and rings were obtained from freshly dissolved peptide. The rings formed by Aβ40, 42, 43, and Aβ16–22 are composed of the peptides in β‐conformation and cause enhancement in thioflavin T fluorescence, suggesting that the molecular architecture of these structures is amyloid‐like. Our results clearly indicate that dissolution of Aβ40, 42 and 43 and the amyloidogenic fragment Aβ16–22 in HFIP results in the formation of annular amyloid‐like structures. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Liang Xu  Yonggang Chen  Xiaojuan Wang 《Proteins》2014,82(12):3286-3297
Although the N‐terminal region of Amyloid β (Aβ) peptides plays dual roles as metal‐coordinating sites and conformational modulator, few studies have been performed to explore the effects of mutations at this region on the overall conformational ensemble of Aβ and the binding propensity of metal ions. In this work, we focus on how three familial Alzheimer's disease mutations (D7H, D7N, and H6R) alter the structural characteristics and thermodynamic stabilities of Aβ42 using molecular dynamics simulations. We observe that each mutation displays increased β‐sheet structures in both N and C termini. In particular, both the N terminus and central hydrophobic region of D7H can form stable β‐hairpin structures with its C terminus. The conserved turn structure at Val24–Lys28 in all peptides and Zn2+‐bound Aβ42 is confirmed as the common structural motif to nucleate folding of Aβ. Each mutant can significantly increase the solvation free energy and thus enhance the aggregation of Aβ monomers. The correlation dynamics between Aβ(1–16) and Aβ(17–42) fragments are elucidated by linking the domain motions with the corresponding structured conformations. We characterize the different populations of correlated domain motions for each mutant from a more macroscopic perspective, and unexpectedly find that Zn2+‐bound Aβ42 ensemble shares the same populations as Aβ42, indicating that the binding of Zn2+ to Aβ follows the conformational selection mechanism, and thus is independent of domain motions, even though the structures of Aβ have been modified at a residue level. Proteins 2014; 82:3286–3297. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
We consider the effect of lauric acid on the stability of various fibril‐like assemblies of Aβ peptides. For this purpose, we have performed molecular dynamics simulations of these assemblies either in complex with lauric acid or without presence of the ligand. While we do not observe a stabilizing effect on Aβ40‐fibrils, we find that addition of lauric acid strengthens the stability of fibrils built from the triple‐stranded S‐shaped Aβ42‐peptides considered to be more toxic. Or results may help to understand how the specifics of the brain‐environment modulate amyloid formation and propagation.  相似文献   

12.
With increasing structural information on proteins, the opportunity to understand physical forces governing protein folding is also expanding. One of the significant non‐covalent forces between the protein side chains is aromatic–aromatic interactions. Aromatic interactions have been widely exploited and thoroughly investigated in the context of folding, stability, molecular recognition, and self‐assembly processes. Through this review, we discuss the contribution of aromatic interactions to the activity and stability of thermophilic, mesophilic, and psychrophilic proteins. Being hydrophobic, aromatic amino acids tend to reside in the protein hydrophobic interior or transmembrane segments of proteins. In such positions, it can play a diverse role in soluble and membrane proteins, and in α‐helix and β‐sheet stabilization. We also highlight here some excellent investigations made using peptide models and several approaches involving aryl–aryl interactions, as an increasingly popular strategy in protein and peptide engineering. A recent survey described the existence of aromatic clusters (trimer, tetramer, pentamer, and higher order assemblies), revealing the self‐associating property of aryl groups, even in folded protein structures. The application of this self‐assembly of aromatics in the generation of modern bionanomaterials is also discussed.  相似文献   

13.
Gessel MM  Wu C  Li H  Bitan G  Shea JE  Bowers MT 《Biochemistry》2012,51(1):108-117
Recently, certain C-terminal fragments (CTFs) of Aβ42 have been shown to be effective inhibitors of Aβ42 toxicity. Here, we examine the interactions between the shortest CTF in the original series, Aβ(39-42), and full-length Aβ. Mass spectrometry results indicate that Aβ(39-42) binds directly to Aβ monomers and to the n = 2, 4, and 6 oligomers. The Aβ42:Aβ(39-42) complex is further probed using molecular dynamics simulations. Although the CTF was expected to bind to the hydrophobic C-terminus of Aβ42, the simulations show that Aβ(39-42) binds at several locations on Aβ42, including the C-terminus, other hydrophobic regions, and preferentially in the N-terminus. Ion mobility-mass spectrometry (IM-MS) and electron microscopy experiments indicate that Aβ(39-42) disrupts the early assembly of full-length Aβ. Specifically, the ion-mobility results show that Aβ(39-42) prevents the formation of large decamer/dodecamer Aβ42 species and, moreover, can remove these structures from solution. At the same time, thioflavin T fluorescence and electron microscopy results show that the CTF does not inhibit fibril formation, lending strong support to the hypothesis that oligomers and not amyloid fibrils are the Aβ form responsible for toxicity. The results emphasize the role of small, soluble assemblies in Aβ-induced toxicity and suggest that Aβ(39-42) inhibits Aβ-induced toxicity by a unique mechanism, modulating early assembly into nontoxic hetero-oligomers, without preventing fibril formation.  相似文献   

14.
Aggregation of the full‐length amyloid‐β (Aβ) and β2‐microglobulin (β2m) proteins is associated with Alzheimer's disease and dialysis‐related amyloidosis, respectively. This assembly process is not restricted to full‐length proteins, however, many short peptides also assemble into amyloid fibrils in vitro. Remarkably, the kinetics of amyloid‐fibril formation of all these molecules is generally described by a nucleation‐polymerization process characterized by a lag phase associated with the formation of a nucleus, after which fibril elongation occurs rapidly. In this study, we report using long molecular dynamics simulations with the OPEP coarse‐grained force field, the thermodynamics and dynamics of the octamerization for two amyloid 7‐residue peptides: the β2m83‐89 NHVTLSQ and Aβ16‐22 KLVFFAE fragments. Based on multiple trajectories run at 310 K, totaling 2.2 μs (β2m83‐89) and 4.8 μs (Aβ16‐22) and starting from random configurations and orientations of the chains, we find that the two peptides not only share common but also very different aggregation properties. Notably, an increase in the hydrophobic character of the peptide, as observed in Aβ16‐22 with respect to β2m83‐89 impacts the thermodynamics by reducing the population of bilayer β‐sheet assemblies. Higher hydrophobicity is also found to slow down the dynamics of β‐sheet formation by enhancing the averaged lifetime of all configuration types (CT) and by reducing the complexity of the CT transition probability matrix. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
The oligomerization and fibrillation of β‐amyloid (Aβ) peptides are important events in the pathogenesis of Alzheimer's disease. However, the motifs within the Aβ sequence that contribute to oligomerization and fibrillation and the complex interplay among these short motifs are unclear. In this study, the oligomerization and fibrillation abilities of the Aβ variants Aβ1–28, Aβ1–36, Aβ11–42, Aβ17–42, Aβ1–40 and Aβ1–42 were examined by thioflavin T fluorescence, western blotting and transmission electron microscopy. Compared with two C‐terminal‐truncated peptides (i.e. Aβ1–28 and Aβ1–36), Aβ11–42, Aβ17–42 and Aβ1–42 had stronger abilities to form oligomers. This indicated that amino acids 37–42 strengthen the β‐hairpin structure of Aβ. Both Aβ1–42 and Aβ1–40 could form fibres, but Aβ17–42 formed irregular fibres, suggesting that amino acids 1–17 were essential for Aβ fibre formation. Aβ1–28 and Aβ1–36 exhibited weak oligomerization and fibrillation, implying that they formed an unstable β‐hairpin structure owing to the incomplete C‐terminal region. Intermediate peptides were likely to form a stable structure, consistent with previous results. This work explains the roles and interplay among motifs within Aβ during oligomerization and fibrillation. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
The goal of this work is to understand how the sequence of a protein affects the likelihood that it will form an amyloid fibril and the kinetics along the fibrillization pathway. The focus is on very short fragments of amyloid proteins since these play a role in the fibrillization of the parent protein and can form fibrils themselves. Discontinuous molecular dynamics simulations using the PRIME20 force field were performed of the aggregation of 48‐peptide systems containing SNQNNF ( PrP (170–175 )), SSTSAA (RNaseA(15–20)), MVGGVV (Aβ(35–40)), GGVVIA (Aβ(37–42)), and MVGGVVIA (Aβ(35–42)). In our simulations SNQQNF, SSTTSAA, and MVGGVV form large numbers of fibrillar structures spontaneously (as in experiment). GGVVIA forms β‐sheets that do not stack into fibrils (unlike experiment). The combination sequence MVGGVVIA forms less fibrils than MVGGVV, hindered by the presence of the hydrophobic residues at the C‐terminal. Analysis of the simulation kinetics and energetics reveals why MVGGVV forms fibrils and GGVVIA does not, and why adding I and A to MVGGVVIA reduces fibrillization and enhances amorphous aggregation into oligomeric structures. The latter helps explain why Aβ(1–42) assembles into more complex oligomers than Aβ(1–40), a consequence of which is that it is more strongly associated with Alzheimer's disease. Proteins 2014; 82:1469–1483. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Aggregation of β‐amyloid peptides into senile plaques has been identified as one of the hallmarks of Alzheimer's disease. An attractive therapeutic strategy for Alzheimer's disease is the inhibition of the soluble β‐amyloid aggregation using synthetic β‐sheet breaker peptides that are capable of binding Aβ but are unable to become part of a β‐sheet structure. As the early stages of the Aβ aggregation process are supposed to occur close to the neuronal membrane, it is strategic to define the β‐sheet breaker peptide positioning with respect to lipid bilayers. In this work, we have focused on the interaction between the β‐sheet breaker peptide acetyl‐LPFFD‐amide, iAβ5p, and lipid membranes, studied by ESR spectroscopy, using either peptides alternatively labeled at the C‐ and at the N‐terminus or phospholipids spin‐labeled in different positions of the acyl chain. Our results show that iAβ5p interacts directly with membranes formed by the zwitterionic phospholipid dioleoyl phosphatidylcholine and this interaction is modulated by inclusion of cholesterol in the lipid bilayer formulation, in terms of both peptide partition coefficient and the solubilization site. In particular, cholesterol decreases the peptide partition coefficient between the membrane and the aqueous medium. Moreover, in the absence of cholesterol, iAβ5p is located between the outer part of the hydrophobic core and the external hydrophilic layer of the membrane, while in the presence of cholesterol it penetrates more deeply into the lipid bilayer. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Estrogen reduces the risk of Alzheimer disease (AD) in postmenopausal women, β‐amyloid (Aβ) burden in animal models of AD, and secretion of Aβ from neuronal cultures. The biological basis for these effects remains unknown. Aβ is proteolytically derived from the β‐amyloid precursor protein (βAPP) within the secretory pathway by distinct enzymatic activities known as β‐ and gamma‐secretase. Aggregated Aβ peptides are found predominantly within extraneuronal space and are believed to initiate toxic and inflammatory cascades leading to neuronal death. The major population of secreted Aβ peptides is generated within the trans‐Golgi‐network (TGN), also the major site of βAPP residence in neurons at steady state. Utilizing cell‐free systems derived from both neuroblastoma cells and primary neurons, we demonstrate that 17β‐estradiol (17β‐E2) stimulates formation of vesicles containing βAPP, from the TGN. Accelerated βAPP trafficking precludes maximal Aβ generation within the TGN. 17β‐E2 appears to modulate TGN phospholipid levels, particularly those of phosphatidylinositol, and recruit soluble trafficking factors, such as Rab11, to the TGN. Together, these results suggest that estrogen may exert its anti‐Aβ effects by regulating βAPP trafficking within the late secretory pathway. These results suggest a novel mechanism through which 17β‐E2 may act in estrogen‐responsive tissues and illustrate how altering the kinetics of a protein's transport can influence its metabolic fate.  相似文献   

19.
The aggregation of amyloid β‐peptide (Aβ42) into toxic oligomers, fibrils, has been identified as a key process in Alzheimer's disease (AD) progression. The role of halogen‐substituted compounds have been highlighted in the disassembly of Aβ protofibril. However, the underlying inhibitory mechanism of Aβ42 protofibril destabilization remains elusive. In this regard, a combined molecular docking and molecular dynamics (MD) simulations were performed to elucidate the inhibitory mechanism of a fluorinated compound, D744 , which has been reported previously for potential in vitro and in vivo inhibitory activity against Aβ42 aggregation and reduction in the Aβ‐induced cytotoxicity. The molecular docking analysis highlights that D744 binds and interacts with chain A of the protofibril structure with hydrophobic contacts and orthogonal multipolar interaction. MD simulations reveal destabilization of the protofibril structure in the presence of D744 due to the decrease in β‐sheet content and a concomitant increase of coil and bend structures, increase in the interchain D23‐K28 salt bridge distance, decrease in the number of backbone hydrogen bonds, increase in the average distance between Cα atoms, and decrease in the binding affinity between chains A and B of the protofibril structure. The binding free‐energy analysis between D744 and the protofibril structure with Molecular Mechanics Poisson‐Boltzmann Surface Area (MM‐PBSA) reveal that residues Leu17, Val18, Phe19, Phe20, Ala21, Glu22, Asp23, Leu34, Val36, Gly37, and Gly38 of chain A of the protofibril structure contribute maximum towards binding free energy (ΔG binding  = −44.87 kcal/mol). The insights into the underlying inhibitory mechanism of small molecules that show potential in vitro anti‐aggregation activity against Aβ42 will be beneficial for the current and future AD therapeutic studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号