首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction – Centrifugal partition chromatography (CPC), as a continuous liquid–liquid partition chromatography with no solid support matrix, combined with evaporative light scattering detection (ELSD) was employed for systematic separation and purification of weak‐chromophoric saponins from a highly valued and important traditional Chinese herbal medicine, Panax notoginseng. Objective – To separate and isolate high‐purity saponins from extract of Panax notoginseng using CPC‐ELSD with a simple and low toxicity solvent system. Methodology – Samples were preparaed by extracting the root material with acetone, treated with n‐butanol and then freeze‐dried. CPC‐ELSD was applied in the separation and detection of notoginsenoside and ginsenosides from extract of Panax notoginseng using a solvent system composed of ethyl acetate–n‐butanol–water (1:1:2, v/v/v). The saponins were analysed and identified by their retention time with high‐performance liquid chromatography (HPLC) coupled with ELSD, as well as electrospray ionisation tandem mass spectrometry (ESI‐MSn ) in the negative and positive ion modes with the authentic standards. Results – A total of 9.6 mg of notoginsenoside R1, 67.8 mg of ginsenoside Rg1, 2.3 mg of Re and 286.5 mg of Rb1 were purified from 487.2 mg of n‐butanol extract of P. notoginseng. The purities of obtained saponins in a single run were assessed to be over 98% by HPLC‐ELSD. Conclusion – CPC‐ELSD was proved to be a very fast and efficient tool for separation of high‐purity dammarane saponins. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Introduction – Asparagus officinalis L. has several biological activities including antifungal, antiviral and antitumoral activities due to the steroidal saponins. Normally diosgenin and sarsasapogenin are analysed separately by thin‐layer chromatography or high‐performance liquid chromatography (HPLC‐UV or HPLC‐ELSD), which is time‐consuming and expensive, so we need to find a rapid solution to this problem. Objective – To develop a sensitive, rapid and validated TLC method for simultaneous detection and quantification of diosgenin and sarsasapogenin. Methodology – Samples were prepared by extraction of A. officinalis with 70% aqueous ethanol to get steroidal saponins, and then hydrolysed using 36 mL 2 m hydrochloric acid for 3 h. The hydrolysis product was extracted with chloroform, and then analysed by TLC, the results of which were verified by HPLC and HPLC‐MS. Results – The retention factor (Rf) of diosgenin and sarsasapogenin on TLC plate were 0.49 and 0.6, respectively. After calculation from the regression equation of the standard curve, the contents of diosgenin and sarsasapogenin in the A. officinalis extract were 0.27–0.46 and 0.11–0.32%, respectively. Conclusion – The study showed that thin‐layer chromatography can be applied for the determination of diosgenin and sarsasapogenin in the oldest tissue of A. officinalis, and also can be conducted for screening of sapogenin in other plant or extracts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Nine cyclic diarylheptanoids, 1 – 9 , including two new compounds, i.e., 9‐oxoacerogenin A ( 8 ) and 9‐Oβ‐D ‐glucopyranosylacerogenin K ( 9 ), along with three acyclic diarylheptanoids, 10 – 12 , and four phenolic compounds, 13 – 16 , were isolated from a MeOH extract of the bark of Acer nikoense (Aceraceae). Acid hydrolysis of 9 yielded acerogenin K ( 17 ) and D ‐glucose. Two of the cyclic diarylheptanoids, acerogenin A ( 1 ) and (R)‐acerogenin B ( 5 ), were converted to their ether and ester derivatives, 18 – 24 and 27 – 33 , respectively, and to the dehydrated derivatives, 25, 26, 34 , and 35 . Upon evaluation of compounds 1 – 16 and 18 – 35 for their inhibitory activities against melanogenesis in B16 melanoma cells, induced with α‐melanocyte‐stimulating hormone (α‐MSH), eight natural glycosides, i.e., six diarylheptanoid glycosides, 2 – 4, 6, 9 , and 12 , and two phenolic glycosides, 15 and 16 , exhibited inhibitory activities with 24–61% reduction of melanin content at 100 μM concentration with no or almost no toxicity to the cells (88–106% of cell viability at 100 μM ). In addition, when compounds 1 – 16 and 18 – 35 were evaluated for cytotoxic activity against human cancer cell lines, two natural acyclic diarylheptanoids, 10 and 11 , ten ether and ester derivatives, 18 – 22 and 27 – 31 , and two dehydrated derivatives, 34 and 35 , exhibited potent cytotoxicities against HL60 human leukemia cell line (IC50 8.1–19.3 μM ), and five compounds, 10, 11, 20, 29 , and 30 , against CRL1579 human melanoma cell line (IC50 10.1–18.4 μM ).  相似文献   

5.
6.
A new 19‐oxo‐18,19‐seco‐ursane‐type triterpeonoid saponin, laevigin E ( 8 ), together with 17 known compounds ( 1 – 7 and 9 – 18 ) were isolated from the root bark of Ilex rotunda Thunb . Their structures were determined by various spectroscopic analysis. Among them, compounds 6 , 9 , 11 , and 18 were isolated from this species for the first time, while compounds 10 and 12 were firstly isolated from the family Aquifoliaceae. Biological activity assay showed that all triterpenoids exhibit moderate cytotoxic activities against MCF7, A549, HeLa and LN229 cell lines. The four triterpenoid saponins ( 3 , 4 , 6 , and 8 ) exhibit slightly better activities compared to the four triterpenoid sapogenins ( 1 , 2 , 5 , and 7 ). Compound 8 showed the best cytotoxicity against A549, HeLa and LN229 cell lines with IC50 of 17.83, 22.58 and 30.98 μm , respectively.  相似文献   

7.
Introduction – A large number of natural and synthetic compounds having butenolides as a core unit have been described and many of them display a wide range of biological activities. Butenolides from P. malacophyllum have presented potential antifungal activities but no specific, fast, and precise method has been developed for their determination. Objective – To develop a methodology based on micellar electrokinetic chromatography to determine butenolides in Piper species. Methodology – The extracts were analysed in an uncoated fused‐silica capillaries and for the micellar system 20 mmol/L SDS, 20% (v/v) acetonitrile (ACN) and 10 mmol/L STB aqueous buffer at pH 9.2 were used. The method was validated for precision, linearity, limit of detection (LOD) and limit of quantitation (LOQ) and the standard deviations were determined from the standard errors estimated by the regression line. Results – A micellar electrokinetic chromatography (MEKC) method for determination of butenolides in extracts gave full resolution for 1 and 2 . The analytical curve in the range 10.0–50.0 µg/mL (r2 = 0.999) provided LOD and LOQ for 1 and 2 of 2.1/6.3 and 1.1/3.5 µg/mL, respectively. The RSD for migration times were 0.12 and 1.0% for peak area ratios with 100.0 ± 1.4% of recovery. Conclusions – A novel high‐performance MEKC method developed for the analysis of butenolides 1 and 2 in leaf extracts of P. malacophyllum allowed their quantitative determined within an analysis time shorter than 5 min and the results indicated CE to be a feasible analytical technique for the quantitative determination of butenolides in Piper extracts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
S. D. Park    Z. Khan    J. G. Ryu    Y. J. Seo    J. T. Yoon 《Journal of Phytopathology》2005,153(4):250-253
The pathogenic potential and reproduction fitness of Meloidogyne hapla on three species of medicinal plants, Angelica koreana, Peucedanum japonicum and Astragalus membranaceus was determined in potted soil under greenhouse conditions. Three weeks old seedlings were inoculated with population density (Pi) of 1000; 2000; 3000; 4000; 5000 and 10000 juveniles (J2)/kg soil. A significant damage was observed in shoot and root length, weight and root‐diameter of these plants by all Pi levels at 90‐day postinoculation. Damage increased with increase in Pi up to 5000 J2/kg soil. At 5000 Pi caused 34.8, 34.1 and 33.3% reduction in root weight of Ang. koreana, P. japonicum and Ast. membranaceus, respectively. Greater root gall severity was observed on Ang. koreana and P. japonicum than on Ast. membranaceus at all Pi levels. At 5000 Pi, root gall severity was 5.0, 5.0, and 3.0 on Ang. koreana, P. japonicum and Ast. membranaceus, respectively. Increasing rate of Pi exponentially reduced reproductive factor (Rf) of M. hapla on all of these medicinal plants. However, Rf was higher on Ang. koreana and P. japonicum than on Ast. membranaceus at all Pi levels. The host status of these medicinal plants renders them unsuitable for their use in crop rotation system in M. hapla‐infested fields.  相似文献   

9.
Introduction – Rhamnus alpinus L. (Rhamnaceae), a traditional plants in the flora of the Abruzzo region, is known to contain active anthraquinone secondary metabolites. However, the content of anthraquinones varies among R. alpinus samples depending on collection season and site. Thus, using simple, reliable and accurate analytical methods for the determination of anthraquinones in R. alpinus extracts allows comparative study of different methods of extraction. Objective – After a partial validation of an HPLC method for the simultaneous determination of five anthraquinones, aloe‐emodine, rheine, emodine, chrysophanol and physcione, in the bark of R. alpinus, we compared three different methods of extraction. Methodology – Anthraquinones were extracted from the bark of R. alpinus using different techniques (methanol maceration, ultrasonic and supercritical CO2 extraction). Separation and quantification of anthraquinones were accomplished using a reversed‐phase C18 column with the mobile phase of H2O–methanol (40 : 60, v/v, 1% formic acid) at a wavelength of 254 nm. The qualitative analyses were also achieved at wavelength of 435 nm. Results – All calibration curves were linear over the concentration range tested (10–200 mM) with the determination coefficients ≥0.991. The detection limits (S/N = 3) were 5 mM for each analytes. All five anthraquinones were found in the samples tested at concentrations reported in experimental data. Conclusion – The described HPLC method and optimised extraction procedure are simple, accurate and selective for separation and quantification of anthraquinones in the bark of R. alpinus and allow evaluation of the best extraction procedure between the tested assays. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Introduction – Artemisia annua is a rich source of biologically active substances such as terpenoids, coumarins and polyacetylenes. These chemicals have been reported to show beneficial pharmacological properties such as antitumor and antibacterial activities. In genetically transformed root cultures of A. annua, three bioactive metabolites, namely, ponticaepoxide (an insecticidal polyacetylene, 1 ), drimartol A (an anticancer sesquiterpene coumarin, 2 ) and (Z)‐7‐acetoxy‐methyl‐11‐methyl‐3‐methylene‐dodeca‐1,6,10‐triene (a new anticancer sesquiterpene, 3 ) were isolated and identified in our recent work. However, no quantitative analysis methods for any of them are yet available, nor for their simultaneous analysis. Objective – To develop an HPLC‐PAD method for simultaneous determination of 1 , 2 and 3 in hairy root cultures of A. annua. Methodology – HPLC operating conditions were optimised and the chromatographic separation was performed on a C18 column with a gradient acetonitrile : water as mobile phase. Results – Linear relationships within the range of investigated concentrations were observed for the three metabolites with their correlation coefficients greater than 0.997. The method was validated for repeatability (RSD <3.59%) and intra‐ and inter‐day precision (RSD <3.1%) with recovery between 94.8 and 107.6% and the RSD less than 3.40%. The method was successfully applied to the time‐course of accumulation of the bioactive compounds in genetically transformed root cultures of A. annua. Conclusion – The HPLC‐PAD method developed for the simultaneous determination of three bioactive metabolites 1 , 2 and 3 was simple, reproducible and sensitive. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Seventeen steviol derivatives, i.e., 2 – 18 , and 19 isosteviol derivatives, i.e., 19 – 37 , were prepared from a diterpenoid glycoside, stevioside ( 1 ). Upon evaluation of the cytotoxic activities of these compounds against leukemia (HL60), lung (A549), stomach (AZ521), and breast (SK‐BR‐3) cancer cell lines, nine steviol derivatives, i.e., 5 – 9 and 11 – 14 , and five isosteviol derivatives, i.e., 28 – 32 , exhibited activities with single‐digit micromolar IC50 values against one or more cell lines. All of these active compounds possess C(19)‐O‐acyl group, and among which, ent‐kaur‐16‐ene‐13,19‐diol 19‐O‐4′,4′,4′‐trifluorocrotonate ( 14 ) exhibited potent cytotoxicities against four cell lines with IC50 values in the range of 1.2–4.1 μM . Compound 14 induced typical apoptotic cell death in HL60 cells upon evaluation of the apoptosis‐inducing activity by flow‐cytometric analysis. These results suggested that acylation of the 19‐OH group of kaurane‐ and beyerane‐type diterpenoids might be useful for enhancement of their cytotoxicities with apoptosis‐inducing activity.  相似文献   

12.
Introduction – Phyllanthus amarus Schum. & Thonn. (Euphorbiaceae), already well known for its antiviral, antihyperglycaemic and antihepatotoxic effects, is also investigated for its antimalarial activity. The major constituent of the crude extract of the whole plant was isolated and identified in this research to be ellagic acid, for which antiplasmodial activity already has been reported. Objective – Because of the potential of the plant and the interesting properties of ellagic acid, an analytical method can be useful for the standardisation of the extracts to allow further biological and pharmacological investigations. In order to obtain an easily performable and inexpensive method, an HPLC analysis was developed and validated. Methodology – The samples were dissolved in DMSO, ultrasonicated for 15 min, and diluted with 50% methanol. Analysis was performed using water and methanol containing 0.06% TFA and the peaks were detected at 254 nm. Results – Ellagic acid showed a linear relationship in the range of 1.74–20.91 µg/mL and a single‐point calibration was allowed. The method was shown to be precise with respect to time (RSD of 1.84%, 3 days, n = 6) and concentration (RSD of 2.54%, 3 levels, n = 6). The overall mean content of ellagic acid was 2.06%. A recovery experiment was performed and it showed an accuracy of 100.4%. Conclusion – Based on the obtained results, it can be concluded that the newly developed method is suitable for its purpose, namely the determination of ellagic acid in the crude extract of P. amarus. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Introduction – Rumex nepalensis contains mainly anthraquinone and naphthalene derivatives. Although HPLC methods have been reported for the analysis of anthraquinones, neither a phytochemical analysis of Rumex species nor the simultaneous determination of anthraquinone and naphthalene derivatives in other samples has been reported so far. Objective – To develop and validate a HPLC method for the simultaneous determination of anthraquinone and naphthalene derivatives in R. nepalensis roots. Methodology – Anthraquinones and naphthalenes were extracted from R. nepalensis roots by three methods (reflux, ultrasonication and pressurized liquid extraction) using methanol. Separation was achieved on an RP C18 column with a gradient mobile phase consisting of 0.05% orthophosphoric acid in water (solvent A) and methanol (solvent B) using a UV detector (254 nm). Results – Small differences were observed in the contents of anthraquinone and naphthalene derivatives extracted by the three methods. Chrysophanol‐8‐Oβ‐D‐glucopyranoside and nepodin were detected as major constituents. The method showed a good linearity (r2 > 0.9992), high precision (RSD < 5%) and a good recovery (97–105%) of the compounds. The lowest detection limit was found to be 0.97 ng and the method was found to be robust. Conclusion – Reflux and ultrasonication were found to be the best suited methods for the extraction of glycosides and aglycones, respectively. The developed and validated HPLC method is simple, precise and accurate; and can hence be recommended as the method of choice for the analysis of anthraquinones and naphthalenes in R. nepalensis and other Rumex species for both quality control as well as routine analytical purposes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Introduction – The lack of pharmacopoeial methodologies for the quality control of plants used for therapeutic purposes is a huge problem that impacts directly upon public health. In the case of saponins, their great structural complexity, weak glycoside bonds and high polarity hinder their identification by conventional techniques. Objective – To apply high‐performance liquid chromatography–electrospray tandem mass spectrometry (HPLC‐ESI/MSn) to identify the O‐glycoside sequence of saponins from the roots of Phytolacca bogotensis. Methodology – Saponins were isolated by preparative HPLC and characterised by NMR spectroscopic experiments. Collision‐induced dissociation (CID) of isolated saponins was performed producing typical degradation reactions that can be associated with several glycosidic bonds as empirical criteria. A method using solid‐phase extraction (SPE) and HPLC/ESI‐MSn for the characterisation of saponins and identification of novel molecules is described. Results – Three saponins reported for the first time in P. bogotensis were isolated and characterised by NMR spectroscopy. Characteristic cross ring cleavage reactions have been used as empirical criteria for the characterisation of the glycosidic bonds most frequently reported for Phytolacca saponins. One new saponin was proposed on the basis of empirical criteria, and other five saponins were identified for the first time for P. bogotensis using HPLC‐ESI/MSn. Conclusion – Electrospray ionisation in combination with tandem mass spectrometry has been established as a powerful tool for the profiling of saponins from roots of P. bogotensis. CID proved to be a useful tool for the characterisation and identification of known and novel saponins from the plant family Phytolaccaceae and can be used for quality control purposes of crude plant extracts. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Introduction – Naphthoquinones; lawsone ( 1 ), lawsone methyl ether ( 2 ) and methylene‐3,3′‐bilawsone ( 3 ) are the main active compounds of Impatiens balsamina leaves. Objective – To develop and validate an HPLC method for simultaneous quantitative determination of 1 – 3 in I. balsamina leaf extracts. Methodology – The method utilised a Supelco® C18 column (5 µm, 4.6 × 150 mm) at 25°C with the mixture of 2% aqueous acetic acid : methanol (gradient elution as follows: 0–10 min, 25 : 75; 10–20 min, 32 : 68; 20–35 min, 55 : 45) as the mobile phase at a flow‐rate of 1 mL/min, and UV detection at 280 nm. The parameters of linearity, repeatability, reproducibility, accuracy specificity and sensitivity of the method were evaluated. Results – The recovery of the method was 96–101% and linearity (r2 ≥ 0.9995) was obtained for all naphthoquinones. A high degree of specificity, as well as repeatability and reproducibility (RSD less than 5%), were also achieved. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Treatment of eight C‐seco limonoids including six of salannin‐type, 1 – 6 , and two of nimbin‐type, 7 and 8 , with a combination of BF3 · Et2O and iodide ion yielded the isomeric C‐seco derivatives, i.e., six isosalannins, 1a – 6a , and two isonimbins, 7a and 8a , respectively. Ohchinin ( 1 ) was further subjected to LiAlH4 reduction which yielded a deesterified trihydroxy limonoid, nimbidinol ( 9 ). In addition, ten limonoids including seven of azadirone‐type, 10 – 16 , and three of gedunin‐type, 17 – 19 , all of which possess no ester functionality in the molecule, were obtained from the neutral fraction of Azadirachta indica seed extract after alkaline hydrolysis. Among the above, twelve compounds, i.e., 1a – 4a , 6a , 9 , 13 – 16 , 18 , and 19 , were new compounds, and their structures were elucidated on the basis of extensive spectroscopic analysis and comparison with literature data. Upon evaluation of all these limonoids for their inhibitory activities against melanogenesis in B16 melanoma cells induced with α‐melanocyte‐stimulating hormone (α‐MSH), five structurally modified limonoids, 3‐deacetyl‐28‐oxosalannin ( 6a ), 9 , 17‐epi‐17‐hydroxynimbocinol ( 14 ), 17‐epi‐17‐hydroxy‐15‐methoxynimbocinol ( 15 ), and 7‐deacetyl‐17‐epinimolicinol ( 18 ), in addition to a natural limonoid, 1 , exhibited potent inhibitory activities with 26 – 66% reduction of melanin content at 100 μm concentration with almost no or low toxicity to the B16 melanoma cells (70 – 99% cell viability at 100 μm ).  相似文献   

17.
As part of our search for new bioactive saponins from Cameroonian medicinal plants, two new oleanane‐type saponins, named gummiferaosides D and E ( 1 and 2 ), along with one known saponin, julibroside J8 ( 3 ), were isolated from the roots of Albizia gummifera. Their structures were established on the basis of extensive 1D‐ and 2D‐NMR (1H‐ and 13C‐NMR, DEPT, COSY, TOCSY, NOESY, HSQC, HSQC‐TOCSY, and HMBC) and HR‐ESI‐MS studies, and by chemical evidence. The apoptotic effect of saponins 1  –  3 was evaluated on the A431 human epidermoid cancer cell. Flow cytometric analyses showed that saponins 1  –  3 induced apoptosis of human epidermoid cancer cell (A431) in a dose‐dependent manner.  相似文献   

18.
Seven phenolic compounds, 1 – 7 , including a new organic acid gallate, mucic acid 1‐ethyl 6‐methyl ester 2‐O‐gallate ( 7 ), were isolated from the MeOH extract of the fruits of Phyllanthus emblica L. (Euphorbiaceae). The structures were elucidated on the basis of extensive spectroscopic analysis and comparison with literature data. Upon evaluated for their antioxidant abilities by 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH), 2,2′‐azinobis(3‐ethylbenzthiazoline‐6‐sulfonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays. The inhibitory activities against melanogenesis in B16 melanoma cells induced by α‐MSH, as well as cytotoxic activities against four human cancer cell lines were also evaluated. All phenolic compounds, 1 – 7 , exhibited potent antioxidant abilities (DPPH: IC50 5.6 – 12.9 μm ; ABTS: 0.87 – 8.43 μm Trolox/μm ; FRAP: 1.01 – 5.79 μm Fe2+/μm , respectively). Besides, 5 – 7 , also exhibited moderate inhibitory activities against melanogenesis (80.7 – 86.8% melanin content), even with no or low toxicity to the cells (93.5 – 101.6% cell viability) at a high concentration of 100 μm . Compounds 1 – 3 exhibited cytotoxic activity against one or more cell lines (IC50 13.9 – 68.4%), and compound 1 with high tumor selectivity for A549 (SI 3.2).  相似文献   

19.
A fast screening method of whole blood was proposed for enantiorecognition of free L‐T3 , L‐T4, and D‐T4. Stochastic microsensors based on four inulins (IN, IQ, TEX, and HD) immobilized on diamond paste (DP) were used for recognition of free L‐T3 , L‐T4, and D‐T4. For the enantiorecognition of free L‐T4 and D‐T4 in whole blood and pharmaceutical samples, the best microsensor was the one based on TEX/DP (wide linear concentration ranges, and low limits of quantification). The best limit of detection for the assay of free L‐T3 (400 fmol/L) was recorded using the microsensors based on HD/DP, while for the assay of free L‐T4, and D‐T4 the best limit of determination (1 pmol/L) was recorded using the TX/DP‐based microsensor. For the enantiorecognition of free L‐T3 in whole blood and pharmaceutical samples the best microsensor was the one based on HD/DP (the wider linear concentration range, and the lower limit of quantification – of pmol/L magnitude order). For the enantiorecognition of free L‐T3 in whole blood and pharmaceutical samples the best microsensor was the one based on HD/DP (the wider linear concentration range, and the lower limit of quantification – of pmol/L magnitude order). Free L‐T3 , L‐T4, and D‐T4 were recovered with high reliabilities in whole blood samples (recoveries higher than 99.00%, with RSD values lower than 1.00%) and pharmaceutical samples (recoveries higher than 95.00% with RSD values lower than 1.00%). Chirality 27:973–978, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
Nine limonoids, 1 – 9 , one apocarotenoid, 11 , one alkaloid, 12 , and one steroid, 13 , from the leaf extract; and one triterpenoid, 10 , five steroids, 14 – 18 , and two flavonoids, 19 and 20 , from the bark extract of Melia azedarach L. (Chinaberry tree; Meliaceae) were isolated. Among these compounds, three compounds, 4 – 6 , were new, and their structures were established as 3‐deacetyl‐28‐oxosalannolactone, 3‐deacetyl‐28‐oxosalanninolide, and 3‐deacetyl‐17‐defurano‐17,28‐dioxosalannin, respectively, on the basis of extensive spectroscopic analyses and comparison with literature data. All of the isolated compounds were evaluated for their cytotoxic activities against leukemia (HL60), lung (A549), stomach (AZ521), and breast (SK‐BR‐3) cancer cell lines. 3‐Deacetyl‐4′‐demethyl‐28‐oxosalannin ( 3 ) against HL60 and AZ521 cells, and methyl kulonate ( 10 ) against HL60 cells exhibited potent cytotoxicities with IC50 values in the range of 2.8–5.8 μM . In addition, upon evaluation of compounds 1 – 13 against production of nitric oxide (NO) in mouse macrophage RAW 264.7 cells induced by lipopolysaccharide (LPS), seven, i.e., trichilinin B ( 1 ), 4 , ohchinin ( 7 ), 23‐hydroxyohchininolide ( 8 ), 21‐hydroxyisoohchininolide ( 9 ), 10 , and methyl indole 3‐carboxylate ( 12 ), inhibited production of NO with IC50 values in the range of 4.6–87.3 μM with no, or almost no, toxicity to the cells (IC50 93.2–100 μM ). Western blot analysis revealed that compound 7 reduced the expression levels of the inducible NO synthase (iNOS) and COX‐2 proteins in a concentration‐dependent manner. Furthermore, compounds 5, 6, 13 , and 18 – 20 exhibited potent inhibitory effects (IC50 299–381 molar ratio/32 pmol TPA) against Epstein? Barr virus early antigen (EBV‐EA) activation induced by 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA) in Raji cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号