首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tryptophan dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) are the only two heme proteins that catalyze the oxidation reaction of tryptophan (Trp) to N-formylkynurenine. While human IDO is able to oxidize both L- and D-Trp, human TDO (hTDO) displays major specificity for L-Trp. In this work, we aim to interrogate the molecular basis for the substrate stereoselectivity of hTDO. Our previous molecular dynamics simulation studies of Xanthomonas campestris TDO (xcTDO) showed that a hydrogen bond between T254 (T342 in hTDO) and the ammonium group of the substrate is present in the L-Trp-bound enzyme, but not in the D-Trp-bound enzyme. The fact that this is the only notable structural alteration induced by the change in the stereo structure of the substrate prompted us to produce and characterize the T342A mutant of hTDO to evaluate the structural role of T342 in controlling the substrate stereoselectivity of the enzyme. The experimental results indicate that the mutation only slightly perturbs the global structural properties of the enzyme but totally abolishes the substrate stereoselectivity. Molecular dynamics simulations of xcTDO show that T254 controls the substrate stereoselectivity of the enzyme by (i) modulating the hydrogen bonding interaction between the NH(3)(+) group and epoxide oxygen of the ferryl-indole 2,3-epoxide intermediate of the enzyme and (ii) regulating the dynamics of two active site loops, loop(250-260) and loop(117-130), critical for substrate binding.  相似文献   

2.
Tryptophan dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) are two heme-containing enzymes which catalyze the conversion of l-tryptophan to N-formylkynurenine (NFK). In mammals, TDO is mostly expressed in liver and is involved in controlling homeostatic serum tryptophan concentrations, whereas IDO is ubiquitous and is involved in modulating immune responses. Previous studies suggested that the first step of the dioxygenase reaction involves the deprotonation of the indoleamine group of the substrate by an evolutionarily conserved distal histidine residue in TDO and the heme-bound dioxygen in IDO. Here, we used classical molecular dynamics and hybrid quantum mechanical/molecular mechanical methods to evaluate the base-catalyzed mechanism. Our data suggest that the deprotonation of the indoleamine group of the substrate by either histidine in TDO or heme-bound dioxygen in IDO is not energetically favorable. Instead, the dioxygenase reaction can be initiated by a direct attack of heme-bound dioxygen on the C2=C3 bond of the indole ring, leading to a protein-stabilized 2,3-alkylperoxide transition state and a ferryl epoxide intermediate, which subsequently recombine to generate NFK. The novel sequential two-step oxygen addition mechanism is fully supported by our recent resonance Raman data that allowed identification of the ferryl intermediate (Lewis-Ballester et al. in Proc Natl Acad Sci USA 106:17371–17376, 2009). The results reveal the subtle differences between the TDO and IDO reactions and highlight the importance of protein matrix in modulating stereoelectronic factors for oxygen activation and the stabilization of both transition and intermediate states.  相似文献   

3.
Tryptophan 2,3‐dioxygenase (TDO), one of the two key enzymes in the kynurenine pathway, catalyzes the indole ring cleavage at the C2‐C3 bond of l ‐tryptophan. This is a rate‐limiting step in the regulation of tryptophan concentration in vivo, and is thus important in drug discovery for cancer and immune diseases. Here, we report the crystal structure of human TDO (hTDO) without the heme cofactor to 2.90 Å resolution. The overall fold and the tertiary assembly of hTDO into a tetramer, as well as the active site architecture, are well conserved and similar to the structures of known orthologues. Kinetic and mutational studies confirmed that eight residues play critical roles in l ‐tryptophan oxidation. Proteins 2014; 82:3210–3216. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Indoleamine 2,3‐dioxygenase (IDO) is the rate‐limiting enzyme in the kynurenine (Kyn) pathway of tryptophan (Trp) metabolism. IDO is immunosuppressive and is induced by inflammation in macrophages and dendritic cells (DCs). Previous studies have shown the serum Kyn/Trp levels in patients with hemolytic anemia to be notably high. In the present study, we demonstrated that hemoglobin (Hb), but not hemin or heme‐free globin (Apo Hb), induced IDO expression in bone marrow‐derived myeloid DCs (BMDCs). Hb induced the phosphorylation and degradation of IκBα. Hb‐induced IDO expression was inhibited by inhibitors of PI3‐kinase (PI3K), PKC and nuclear factor (NF)‐κB. Hb translocated both RelA and p52 from the cytosol to the nucleus and induced the intracellular generation of reactive oxygen species (ROS). Hb‐induced IDO expression was inhibited by anti‐oxidant N‐acetyl‐L ‐cysteine (NAC) or mixtures of SOD and catalase, however, IDO expression was enhanced by 3‐amino‐1,2,4‐triazole, an inhibitor of catalase, suggesting that the generation of ROS such as O, H2O2, and hydroxyl radical is required for the induction of IDO expression. The generation of ROS was inhibited by a PKC inhibitor, and this action was further enhanced by addition of a PI3K inhibitor. Hb induced Akt phosphorylation, which was inhibited by a PI3K inhibitor and enhanced by a PKC inhibitor. These results suggest that the activation of NF‐κB through the PI3K‐PKC‐ROS and PI3K‐Akt pathways is required for the Hb‐induced IDO expression in BMDCs. J. Cell. Biochem. 108: 716–725, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Pyrrolnitrin is a commonly used and clinically effective treatment for fungal infections and provides the structural basis for the more widely used fludioxinil. The pyrrolnitrin biosynthetic pathway consists of four chemical steps, the second of which is the rearrangement of 7-chloro-tryptophan by the enzyme PrnB, a reaction that is so far unprecedented in biochemistry. When expressed in Pseudomonas fluorescens, PrnB is red in color due to the fact that it contains 1 mol of heme b per mole of protein. The crystal structure unexpectedly establishes PrnB as a member of the heme-dependent dioxygenase superfamily with significant structural but not sequence homology to the two-domain indoleamine 2,3-dioxygenase enzyme (IDO). The heme-binding domain is also structurally similar to that of tryptophan 2,3-dioxygenase (TDO). Here we report the binary complex structures of PrnB with d- and l-tryptophan and d- and l-7-chloro-tryptophan. The structures identify a common hydrophobic pocket for the indole ring but exhibit unusual heme ligation and substrate binding when compared with that observed in the TDO crystal structures. Our solution studies support the heme ligation observed in the crystal structures. Purification of the hexahistidine-tagged PrnB yields homogeneous protein that only displays in vitro activity with 7-chloro-l-tryptophan after reactivation with crude extract from the host strain, suggesting that an as yet unknown cofactor is required for activity. Mutation of the proximal heme ligand results, not surprisingly, in inactive enzyme. Redox titrations show that PrnB displays a significantly different reduction potential to that of IDO or TDO, indicating possible differences in the PrnB catalytic cycle. This is confirmed by the absence of tryptophan dioxygenase activity in PrnB, although a stable oxyferrous adduct (which is the first intermediate in the TDO/IDO catalytic cycle) can be generated. We propose that PrnB shares a key catalytic step with TDO and IDO, generation of a tryptophan hydroperoxide intermediate, although this species suffers a different fate in PrnB, leading to the eventual formation of the product, monodechloroaminopyrrolnitrin.  相似文献   

6.
Indoleamine 2,3‐dioxygenase (IDO) is an interferon‐γ (IFN‐γ)–induced tryptophan‐degrading enzyme, producing kynurenine (KYN) that participates in the mechanism of tumor immune tolerance. Thus, IDO inhibition has been considered a strategy for anticancer therapy. The aim of this study was to identify whether the metabolites originated from the competitive routes of tryptophan metabolism, such as the serotonergic or N, N‐dimethyltryptamine (DMT) pathways, have inhibitory effects on recombinant human IDO (rhIDO) activity. Serotonin and melatonin had no effect; on the other hand, tryptamine (TRY) and DMT modulated the activity of rhIDO as classical non‐competitive inhibitors, with Ki values of 156 and 506 μM, respectively. This inhibitory effect was also observed on constitutively expressed or IFN‐γ–induced IDO in the A172 human glioma cell line. TRY and DMT increased the cytotoxic activity of peripheral blood mononuclear cells (PBMCs) in co‐culture assays. We conclude that the IDO inhibition by TRY and DMT contributed to a more effective tumor‐reactive response by the PBMCs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The enzyme indoleamine 2,3‐dioxygenase 1 (IDO1) catalyses the initial, rate‐limiting step in tryptophan (Trp) degradation, resulting in tryptophan starvation and the production of immunoregulatory kynurenines. IDO1's catalytic function has long been considered as the one mechanism responsible for IDO1‐dependent immune suppression by dendritic cells (DCs), which are master regulators of the balance between immunity and tolerance. However, IDO1 also harbours immunoreceptor tyrosine‐based inhibitory motifs, (ITIM1 and ITIM2), that, once phosphorylated, bind protein tyrosine phosphatases, (SHP‐1 and SHP‐2), and thus trigger an immunoregulatory signalling in DCs. This mechanism leads to sustained IDO1 expression, in a feedforward loop, which is particularly important in restraining autoimmunity and chronic inflammation. Yet, under specific conditions requiring that early and protective inflammation be unrelieved, tyrosine‐phosphorylated ITIMs will instead bind the suppressor of cytokine signalling 3 (SOCS3), which drives IDO1 proteasomal degradation and shortens the enzyme half‐life. To dissect any differential roles of the two IDO1's ITIMs, we generated protein mutants by replacing one or both ITIM‐associated tyrosines with phospho‐mimicking glutamic acid residues. Although all mutants lost their enzymic activity, the ITIM1 – but not ITIM2 mutant – did bind SHPs and conferred immunosuppressive effects on DCs, making cells capable of restraining an antigen‐specific response in vivo. Conversely, the ITIM2 mutant would preferentially bind SOCS3, and IDO1's degradation was accelerated. Thus, it is the selective phosphorylation of either ITIM that controls the duration of IDO1 expression and function, in that it dictates whether enhanced tolerogenic signalling or shutdown of IDO1‐dependent events will occur in a local microenvironment.  相似文献   

8.
Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are promising drug development targets due to their implications in pathologies such as cancer and neurodegenerative diseases. The search for IDO1 inhibitor has been intensely pursued but there is a paucity of potent TDO and IDO1/TDO dual inhibitors. Natural product tryptanthrin has been confirmed to bear IDO1 and/or TDO inhibitory activities. Herein, twelve novel tryptanthrin derivatives were synthesized and evaluated for the IDO1 and TDO inhibitory potency. All of the compounds were found to be IDO1/TDO dual inhibitors, in particular, compound 9a and 9b bore IDO1 inhibitory activity similar to that of INCB024360, and compound 5a and 9b had remarkable TDO inhibitory activity superior to that of the well-known TDO inhibitor LM10. This work enriches the collection of IDO1/TDO dual inhibitors and provides chemical molecules for potential development into drugs.  相似文献   

9.
Indoleamine 2,3‐dioxygenase (IDO) converts tryptophan to l ‐kynurenine, and it is noted as a relevant molecule in promoting tolerance and suppressing adaptive immunity. In this study, to investigate the effects of IDO in carbon tetrachloride (CCl4)–induced hepatitis model, the levels of IDO enzymic activities in the mock group, the control group and the 1‐methyl‐d ‐tryptophan (1‐MT)–treated group were confirmed by determination of l ‐kynurenine concentrations. Serum alanine aminotransferase levels in 1‐MT‐treated rats after CCl4 injection significantly increased compared with those in mock and control groups. In CCl4‐induced hepatitis models, tumour necrosis factor‐α (TNF‐α) is critical in the development of liver injury. The mRNA expression and secretion levels of TNF‐α in the liver from 1‐MT‐treated rats were more enhanced compared with those in the mock and the control groups. Moreover, the levels of cytokine and chemokine from mock, control group and 1‐MT‐treated rats after treated with CCl4 were analyzed by ELISA, and the level of interleukin‐6 was found to increase in 1‐MT‐treated rats. It was concluded that the deficiency of IDO exacerbated liver injury in CCl4‐induced hepatitis and its effect may be connected with TNF‐α and interleukin‐6. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The roles of the kynurenine pathway (KP) of tryptophan (Trp) degradation in serotonin deficiency in major depressive disorder (MDD) and the associated inflammatory state are considered in the present study. Using molecular docking in silico, we demonstrate binding of antidepressants to the crystal structure of tryptophan 2,3-dioxygenase (TDO) but not to indoleamine 2,3-dioxygenase (IDO). TDO is inhibited by a wide range of antidepressant drugs. The rapidly acting antidepressant ketamine does not dock to either enzyme but may act by inhibiting kynurenine monooxygenase thereby antagonising glutamatergic activation to normalise serotonin function. Antidepressants with anti-inflammatory properties are unlikely to act by direct inhibition of IDO but may inhibit IDO induction by lowering levels of proinflammatory cytokines in immune-activated patients. Of six anti-inflammatory drugs tested, only salicylate docks strongly to TDO and apart from celecoxib, the other five dock to IDO. TDO inhibition remains the major common property of antidepressants and TDO induction the most likely mechanism of defective serotonin synthesis in MDD. TDO inhibition and increased free Trp availability by salicylate may underpin the antidepressant effect of aspirin and distinguish it from other nonsteroidal anti-inflammatory drugs. The controversial findings with IDO in MDD patients with an inflammatory state can be explained by IDO induction being overridden by changes in subsequent KP enzymes influencing glutamatergic function. The pathophysiology of MDD may be underpinned by the interaction of serotonergic and glutamatergic activities.  相似文献   

11.
A mouse model of polymicrobial sepsis induced by cecal content injection (CCI) was developed with the aim of gaining a better understanding of the mechanism of sepsis. This model has a similar survival pattern to the conventional model with the added benefits of ability to vary the severity of sepsis and greater consistency. Administration of 1‐methyl‐D ‐tryptophan (1‐MT) to inhibit indoleamine 2,3‐dioxygenase (IDO) in mice with CCI‐induced sepsis increased the survival rate and tended to up‐regulate IL‐10/IL‐12 serum concentrations. The effectiveness of 1‐MT was confirmed by increases in IL‐10 over IL‐12 in bone marrow‐derived dendritic cells (BMDCs) treated with LPS and 1‐MT and a superior survival rate 24 hr after injection of these double treated BMDCs in the CCI‐induced sepsis model. Therefore, CCI is both a useful and reliable technique for investigating polymicrobial sepsis. The present findings using this newly developed model suggest that inhibition of IDO alleviates the severity of polymicrobial sepsis and modulates the immune response even in cases of severe systemic septic inflammation.  相似文献   

12.
Nienhaus K  Nickel E  Lu C  Yeh SR  Nienhaus GU 《IUBMB life》2011,63(3):153-159
Human indoleamine 2,3-dioxygenase (hIDO), a monomeric heme enzyme, catalyzes the oxidative degradation of L-tryptophan (L-Trp) and other indoleamine derivatives. Its activity follows typical Michaelis-Menten behavior only for L-Trp concentrations up to 50 μM; a further increase in the concentration of L-Trp causes a decrease in the activity. This substrate inhibition of hIDO is a result of the binding of a second L-Trp molecule in an inhibitory substrate binding site of the enzyme. The molecular details of the reaction and the inhibition are not yet known. In the following, we summarize the present knowledge about this heme enzyme.  相似文献   

13.
The initial step in the l-kynurenine pathway is oxidation of l-tryptophan to N-formylkynurenine and is catalyzed by one of two heme enzymes, tryptophan 2,3-dioxygenase (TDO) or indoleamine 2,3-dioxygenase (IDO). Here, we address the role of the conserved active site Ser167 residue in human IDO (S167A and S167H variants), which is replaced with a histidine in other mammalian and bacterial TDO enzymes. Our kinetic and spectroscopic data for S167A indicate that this residue is not essential for O 2 or substrate binding, and we propose that hydrogen bond stabilization of the catalytic ferrous-oxy complex involves active site water molecules in IDO. The data for S167H show that the ferrous-oxy complex is dramatically destabilized in this variant, which is similar to the behavior observed in human TDO [Basran et al. (2008) Biochemistry 47, 4752-4760], and that this destabilization essentially destroys catalytic activity. New kinetic data for the wild-type enzyme also identify the ternary [enzyme-O 2-substrate] complex. The data reveal significant differences between the IDO and TDO enzymes, and the implications of these results are discussed in terms of our current understanding of IDO and TDO catalysis.  相似文献   

14.
Indoleamine 2,3-dioxygenase is a heme enzyme that catalyzes the oxidative degradation of L-Trp and other indoleamines. We have used resonance Raman spectroscopy to characterize the heme environment of purified recombinant human indoleamine 2,3-dioxygenase (hIDO). In the absence of L-Trp, the spectrum of the Fe(3+) form displayed six-coordinate, mixed high and low spin character. Addition of L-Trp triggered a transition to predominantly low spin with two Fe-OH(-) stretching modes identified at 546 and 496 cm(-1), suggesting H-bonding between the NH group of the pyrrole ring of L-Trp and heme-bound OH(-). The distal pocket of Fe(3+) hIDO was explored further by an exogenous heme ligand, CN(-); again, binding of L-Trp introduced strong H-bonding and/or steric interactions to the heme-bound CN(-). On the other hand, the spectrum of Fe(2+) hIDO revealed a five-coordinate and high spin heme with or without L-Trp bound. The proximal Fe-His stretching mode, identified at 236 cm(-1), did not shift upon L-Trp addition, indicating that the proximal Fe-His bond strength is not affected by binding of the substrate. The high Fe-His stretching frequency suggests that Fe(2+) hIDO has a strong "peroxidase-like" Fe-His bond. Using CO as a structural probe for the distal environment of Fe(2+) hIDO revealed that binding of L-Trp in the distal pocket converted IDO to a peroxidase-like enzyme. Binding of L-Trp also caused conformational changes to the heme vinyl groups, which were independent of changes of the spin and coordination state of the heme iron. Together these data indicate that the strong proximal Fe-His bond and the strong H-bonding and/or steric interactions between l-Trp and dioxygen in the distal pocket are likely crucial for the enzymatic activity of hIDO.  相似文献   

15.
16.
Samelson-Jones BJ  Yeh SR 《Biochemistry》2006,45(28):8527-8538
Indoleamine 2,3-dioxygenase (IDO) is a heme-containing enzyme, which catalyzes the initial and rate-determining step of L-tryptophan (L-Trp) metabolism via the kynurenine pathway in nonhepatic tissues. Similar to inducible nitric oxide synthase (iNOS), IDO is induced by interferon-gamma and lipopolysaccharide in the inflammatory response. In vivo studies indicate that the nitric oxide (NO) produced by iNOS inhibits IDO activity by directly interacting with it and by promoting its degradation through the proteasome pathway. In this work, the molecular mechanisms underlying the interactions between NO and human recombinant IDO (hIDO) were systematically studied with optical absorption and resonance Raman spectroscopies. Resonance Raman data show that the heme prosthetic group in the NO-bound hIDO is situated in a unique protein environment and adopts an out-of-plane deformed geometry that is sensitive to L-Trp binding. Under mildly acidic conditions, the proximal heme iron-His bond is prone to rupture, resulting in a five-coordinate (5C) NO-bound species. The bond breakage reaction induces significant conformational changes in the protein matrix, which may account for the NO-induced inactivation of hIDO and its enhanced proteasome-linked degradation in vivo. Moreover, it was found that the NO-induced bond breakage reaction occurs more rapidly in the ferrous protein than in the ferric protein and is fully inhibited by L-Trp binding. The spectroscopic data presented here not only provide the first glimpse of the possible regulatory mechanism of hIDO by NO in the cell at the molecular level, but they also suggest that the NO-dependent regulation can be modulated by cellular factors, such as the NO abundance, pH, redox environment, and L-Trp availability.  相似文献   

17.
The heme enzyme indoleamine 2,3-dioxygenase (IDO) oxidizes the pyrrole moiety of L-tryptophan (Trp) and other indoleamines and represents the initial and rate-limiting enzyme of the kynurenine (Kyn) pathway. IDO is a unique enzyme in that it can utilize superoxide anion radical (O2*- ) as both a substrate and a co-factor. The latter role is due to the ability of O2*- to reduce inactive ferric-IDO to the active ferrous form. Nitrogen monoxide (*NO) and H2O2 inhibit the dioxygenase and various inter-relationships between the nitric oxide synthase- and IDO-initiated amino acid degradative pathways exist. Induction of IDO and metabolism of Trp along the Kyn pathway is implicated in a variety of physiological and pathophysiological processes, including anti-microbial and anti-tumor defense, neuropathology, immunoregulation and antioxidant activity. Antioxidant activity may arise from O2*- scavenging by IDO and formation of the potent radical scavengers and Kyn pathway metabolites, 3-hydroxyanthranilic acid and 3-hydroxykynurenine. Under certain conditions, these aminophenols and other Kyn pathway metabolites may exhibit pro-oxidant activities. This article reviews findings indicating that redox reactions are involved in the regulation of IDO and Trp metabolism along the Kyn pathway and also participate in the biological activities exhibited by Kyn pathway metabolites.  相似文献   

18.
Indoleamine 2,3 dioxygenase (Ido1), the first and rate‐limiting enzyme of the kynurenine pathway (KP), is a striatally enriched gene with increased expression levels in the YAC128 mouse model of Huntington disease (HD). Our objective in this study was to delineate age‐related KP alterations in this model. Three enzymes potentially catalyze the first step of the KP; Ido1 and Indoleamine 2,3 dioxygenase‐2 were highly expressed in the striatum and Tryptophan 2,3 dioxygenase (Tdo2) in the cerebellum. During development, Ido1 mRNA expression is dynamically regulated and chronically up‐regulated in YAC128 mice. Kynurenine (Kyn) to tryptophan (Trp) ratio, a measure of activity in the first step of the KP, was elevated in YAC128 striatum, but no change in Tdo2 mRNA levels or Kyn to Trp ratio was detected in the cerebellum. Ido1 induction was coincident with Trp depletion at 3 months and Kyn accumulation at 12 months of age in striatum. Changes in downstream KP metabolites of YAC128 mice generally followed a biphasic pattern with neurotoxic metabolites reduced at 3 months and increased at 12 months of age. Striatally specific induction of Ido1 and downstream KP alterations suggest involvement in HD pathogenesis, and should be taken into account in future therapeutic developments for HD.  相似文献   

19.
We investigated the contribution percentage of tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) to the conversion of d-tryptophan to nicotinamide in TDO-knockout mice. The calculated percentage conversions indicated that TDO and IDO oxidized 70 and 30%, respectively, of the dietary l-tryptophan. These results indicate that both TDO and IDO biosynthesize nicotinamide from d-tryptophan and l-tryptophan in mice.  相似文献   

20.
Indoleamine 2,3‐dioxygenase (IDO), a tryptophan degrading enzyme, is a potent immunomodulatory factor. IDO expression in fibroblasts selectively induces apoptosis in immune cells but not in primary skin cells. However, the mechanism(s) of this selective effect of IDO‐induced low tryptophan environment is not elucidated. The aim of present study was to investigate whether the activity of general control non‐derepressible‐2(GCN2) kinase stress‐responsive pathway and its known inhibitor, protein IMPACT homolog, in immune and skin cells are differentially regulated in response to IDO‐induced low tryptophan environment. IDO‐expressing human fibroblasts were co‐cultured with Jurkat cells, human T cells, fibroblasts, or keratinocytes. Activation of GCN2 pathway was significantly higher in immune cells exposed to IDO‐expressing environment relative to that of skin cells. In contrast, IMPACT was highly and constitutively expressed in skin cells while its expression was very low in stimulated T cells and undetectable in Jurkat cells. A significant IDO‐induced suppressive as well as apoptotic effect was demonstrated in IMPACT knocked down fibroblasts co‐cultured with IDO‐expressing fibroblasts. Proliferation of Jurkat cells, stably transduced with IMPACT‐expressing vector, was rescued significantly in tryptophan‐deficient but not IDO‐expressing environment. This may be due to the ability of IMPACT to recover the effects of IDO‐mediated tryptophan depletion (GCN2 dependent) but not the effects of IDO‐generated cytotoxic metabolites. These findings collectively suggest for the first time that high expression of protein IMPACT homolog in non‐immune cells such as skin cells acts as a protective mechanism against IDO‐induced GCN2 activation, therefore, makes them resistant to the amino acid‐deprived environment caused by IDO. J. Cell. Physiol. 225: 196–205, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号