首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective:  Spontaneous differentiation of human embryonic stem cell (hESC) cultures is a major concern in stem cell research. Physical removal of differentiated areas in a stem cell colony is the current approach used to keep the cultures in a pluripotent state for a prolonged period of time. All hESCs available for research require unidentified soluble factors secreted from feeder layers to maintain the undifferentiated state and pluripotency. Under experimental conditions, stem cells are grown on various matrices, the most commonly used being Matrigel.
Materials and Methods:  We propose an alternative method to prevent spontaneous differentiation of hESCs grown on Matrigel that uses low amounts of recombinant noggin. We make use of the porosity of Matrigel to serve as a matrix that traps noggin and gradually releases it into the culture to antagonize bone morphogenetic proteins (BMP). BMPs are known to initiate differentiation of hESCs and are either present in the conditioned medium or are secreted by hESCs themselves.
Results:  hESCs grown on Matrigel supplemented with noggin in conditioned medium from feeder layers (irradiated mouse embryonic fibroblasts) retained both normal karyotype and markers of hESC pluripotency for 14 days. In addition, these cultures were found to have increased cell proliferation of stem cells as compared to hESCs grown on Matrigel alone.
Conclusion:  Noggin can be utilized for short term prevention of spontaneous differentiation of stem cells grown on Matrigel.  相似文献   

2.
As a result of their pluripotency and potential for unlimited self‐renewal, human embryonic stem cells (hESCs) hold tremendous promise in regenerative medicine. An essential prerequisite for the widespread application of hESCs is the establishment of effective and efficient protocols for large‐scale cell culture, storage, and distribution. At laboratory scales hESCs are cultured adherent to tissue culture plates; these culture techniques are labor‐intensive and do not scale to high cell numbers. In an effort to facilitate larger scale hESC cultivation, we investigated the feasibility of culturing hESCs adherent to microcarriers. We modified the surface of Cytodex 3 microcarriers with either Matrigel or mouse embryonic fibroblasts (MEFs). hESC colonies were effectively expanded in a pluripotent, undifferentiated state on both Matrigel‐coated microcarriers and microcarriers seeded with a MEF monolayer. While the hESC expansion rate on MEF‐microcarriers was less than that on MEF‐plates, the doubling time of hESCs on Matrigel‐microcarriers was indistinguishable from that of hESCs expanded on Matrigel‐coated tissue culture plates. Standard hESC cryopreservation methodologies are plagued by poor viability and high differentiation rates upon thawing. Here, we demonstrate that cryopreservation of hESCs adherent to microcarriers in cryovials provides a higher recovery of undifferentiated cells than cryopreservation of cells in suspension. Together, these results suggest that microcarrier‐based stabilization and culture may facilitate hESC expansion and storage for research and therapeutic applications. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

3.
Human feeder layers for human embryonic stem cells   总被引:39,自引:0,他引:39  
Human embryonic stem (hES) cells hold great promise for future use in various research areas, such as human developmental biology and cell-based therapies. Traditionally, these cells have been cultured on mouse embryonic fibroblast (MEF) feeder layers, which permit continuous growth in an undifferentiated stage. To use these unique cells in human therapy, an animal-free culture system must be used, which will prevent exposure to mouse retroviruses. Animal-free culture systems for hES cells enjoy three major advantages in the basic culture conditions: 1). the ability to grow these cells under serum-free conditions, 2). maintenance of the cells in an undifferentiated state on Matrigel matrix with 100% MEF-conditioned medium, and 3). the use of either human embryonic fibroblasts or adult fallopian tube epithelial cells as feeder layers. In the present study, we describe an additional animal-free culture system for hES cells, based on a feeder layer derived from foreskin and a serum-free medium. In this culture condition, hES cells maintain all embryonic stem cell features (i.e., pluripotency, immortality, unlimited undifferentiated proliferation capability, and maintenance of normal karyotypes) after prolonged culture of 70 passages (>250 doublings). The major advantage of foreskin feeders is their ability to be continuously cultured for more than 42 passages, thus enabling proper analysis for foreign agents, genetic modification such as antibiotic resistance, and reduction of the enormous workload involved in the continuous preparation of new feeder lines.  相似文献   

4.
Human induced pluripotent stem cells (hiPSCs) are a type of pluripotent stem cells artificially derived from an adult somatic cell (typically human fibroblast) by forced expression of specific genes. In recent years, different feeders like inactivated mouse embryonic fibroblasts (MEFs), human dermal fibroblasts (HDFs), and feeder free system have commonly been used for supporting the culture of stem cells in undifferentiated state. In the present work, the culture of hiPSCs and their characterizations on BD Matrigel (feeder-and serum-free system), MEF and HDF feeders using cell culture methods and molecular techniques were evaluated and compared. The isolated HDFs from foreskin samples were reprogrammed to hiPSCs using gene delivery system. Then, the pluripotency ability of hiPSCs cultured on each layer was determined by teratoma formation and immunohistochemical staining. After EBs generation the expression level of three germ layers genes were evaluated by Q-real-time PCR. Also, the cytogenetic stability of hiPSCs cultured on each condition was analyzed by karyotyping and comet assay. Then, the presence of pluripotency antigens were confirmed by Immunocytochemistry (ICC) test and alkaline phosphatase staining. This study were showed culturing of hiPSCs on BD Matrigel, MEF and HDF feeders had normal morphology and could maintain in undifferentiated state for prolonged expansion. The hiPSCs cultured in each system had normal karyotype without any chromosomal abnormalities and the DNA lesions were not observed by comet assay. Moreover, up-regulation in three germ layers genes in cultured hiPSCs on each layer (same to ESCs) compare to normal HDFs were observed (p < 0.05). The findings of the present work were showed in stem cells culturing especially hiPSCs both MEF and HDF feeders as well as feeder free system like Matrigel are proper despite benefits and disadvantages. Although, MEFs is suitable for supporting of stem cell culturing but it can animal pathogens transferring and inducing immune response. Furthermore, HDFs have homologous source with hiPSCs and can be used as feeder instead of MEF but in therapeutic approaches the cells contamination is a problem. So, this study were suggested feeder free culturing of hiPSCs on Matrigel in supplemented media (without using MEF conditioned medium) resolves these problems and could prepare easy applications of hiPSCs in therapeutic approaches of regenerative medicine such as stem-cell therapy and somatic cell nuclear in further researches.  相似文献   

5.

Background  

To maintain pluripotency of human embryonic stem (huES) cells in feeder-free culture it has been necessary to provide a Matrigel substratum, which is a complex of poorly defined extracellular matrices and growth factors derived from mouse Engelbreth-Holm-Swarm sarcoma cells. Culture of stem cells under ill-defined conditions can inhibit the effectiveness of maintaining cells in a pluripotent state and reduce reproducibility of differentiation protocols. Moreover recent batches of Matrigel have been found to be contaminated with the single stranded RNA virus, Lactate Dehydrogenase Elevating Virus (LDEV), raising concerns regarding the safety of using stem cells that have been cultured on Matrigel in a therapeutic setting. To circumvent such concerns, we attempted to identify a recombinant matrix that could be used as an alternative to Matrigel for the culture of human pluripotent stem cells. huES and human induced pluripotent stem (hiPS) cells were grown on plates coated with a fusion protein consisting of E-cadherin and the IgG Fc domain using mTeSR1 medium.  相似文献   

6.
Maintenance and differentiation of human pluripotent stem cells (hPSCs) usually requires culture on a substrate for cell adhesion. A commonly used substratum is Matrigel purified from Engelbreth—Holm—Swarm sarcoma cells, and consists of a complex mixture of extracellular matrix proteins, proteoglycans, and growth factors. Several studies have successfully induced differentiation of hepatocyte-like cells from hPSCs. However, most of these studies have used Matrigel as a cell adhesion substrate, which is not a defined culture condition. In an attempt to generate a substratum that supports undifferentiated properties and differentiation into hepatic lineage cells, we designed novel substrates consisting of vitronectin fragments fused to the IgG Fc domain. hPSCs adhered to these substrates via interactions between integrins and the RGD (Arg-Gly-Asp) motif, and the cells maintained their undifferentiated phenotypes. Using a previously established differentiation protocol, hPSCs were efficiently differentiated into mesendodermal and hepatic lineage cells on a vitronectin fragment-containing substrate. We found that full-length vitronectin did not support stable cell adhesion during the specification stage. Furthermore, the vitronectin fragment with the minimal RGD-containing domain was sufficient for differentiation of human induced pluripotent stem cells into hepatic lineage cells under completely defined conditions that facilitate the clinical application of cells differentiated from hPSCs.  相似文献   

7.
Previous studies have shown that cultivation of undifferentiated human embryonic stem (hES) cells requires human fibroblasts (hF) or mouse embryonic fibroblast (mEF) feeders or a coating matrix such as laminin, fibronectin or Matrigel in combination with mEF or hF conditioned medium. We here demonstrate a successful feeder-free and matrix-free culture system in which undifferentiated hES cells can be cultured directly on plastic surfaces without any supportive coating, in a hF conditioned medium. The hES cells cultured directly on plastic surfaces grow as colonies with morphology very similar to cells cultured on Matrigel(TM). Two hES cell lines SA167 and AS034.1 were adapted to matrix-free growth (MFG) and have so far been cultured up to 43 passages and cryopreserved successfully. The lines maintained a normal karyotype and expressed the expected marker profile of undifferentiated hES cells for Oct-4, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81 and SSEA-1. The hES cells formed teratomas in SCID mice and differentiated in vitro into derivates of all three germ layers. Thus, the MFG-adapted hES cells appear to retain pluripotency and to remain undifferentiated. The present culture system has a clear potential to be scaleable up to a manufacturing level and become the preferred culture system for various applications such as cell therapy and toxicity testing.  相似文献   

8.
9.
Hughes CS  Radan L  Betts D  Postovit LM  Lajoie GA 《Proteomics》2011,11(20):3983-3991
Numerous matrices for the growth of human embryonic stem cells (hESC) in vitro have been described. However, their exact composition is typically unknown. Information on the components of these matrices will aid in the development of a fully defined growth surface for hESCs. These matrices typically consist of mixture of proteins present in a wide range of abundance making their characterization challenging. In this study, we performed the proteomic analysis of five previously uncharacterized matrices: CellStart, Human Basement Membrane Extract (Human BME), StemXVivo, Bridge Human Extracellular Matrix (BridgeECM), and mouse embryonic fibroblast conditioned matrix (MEF-CMTX). Based on a proteomics protocol optimized using lysates from HeLa cells, we undertook the analysis of the five complex extracellular matrix (ECM) samples using a combination of strong anion and cation exchange chromatography and SDS-PAGE. For each of these matrices, we identify numerous proteins, indicating their complex nature. We also compared these results with a similar proteomics analysis of the growth matrix, Matrigel?. From these analyses, we observed that fibronectin is a primary component of nearly all hESC supportive matrices. This observation led to the investigation of the suitability of fibronectin as a defined ECM for the growth of hESCs. We found that fibronectin promotes the maintenance of pluripotent H9 and CA1 hESCs in an undifferentiated state using mTeSR1 medium. This finding validates the utility of characterizing matrices used for hESC growth in revealing ECM components required for culturing hESCs in a universally applicable defined system.  相似文献   

10.
This study aimed to identify proteins exposed on the surface of Listeria monocytogenes cells for diagnostic reagent development. Brief trypsin treatment of L. monocytogenes cells followed by peptide separation and identification by nano‐LC and online‐MS/MS was performed. In parallel, as a negative control, proteins secreted into the digest buffer as well as proteins from cell lysis were identified. One hundred and seventy‐four proteins were identified in at least two of three trials in either the negative control or during cell digest. Nineteen surface, 21 extracellularly secreted, 132 cytoplasmic, and two phage proteins were identified. Immunofluorescence microscopy of L. monocytogenes cells revealed the surface localization of two potential candidates for L. monocytogenes isolation and detection: lipoprotein LMOf2365_0546 and PBPD1 (LMOf2365_2742). In this report, we present the first data set of surface‐exposed L. monocytogenes proteins currently available. The data have been deposited to the ProteomeXchange Consortium with identifier PXD000035.  相似文献   

11.
Teratoma tumor formation is an essential criterion in determining the pluripotency of human pluripotent stem cells. However, currently there is no consistent protocol for assessment of teratoma forming ability. Here we present detailed characterization of a teratoma assay that is based on subcutaneous co-transplantation of defined numbers of undifferentiated human embryonic stem cells (hESCs) with mitotically inactivated feeder cells and Matrigel into immunodeficient mice. The assay was highly reproducible and 100% efficient when 100,000 hESCs were transplanted. It was sensitive, promoting teratoma formation after transplantation of 100 hESCs, though larger numbers of animals and longer follow-up were required. The assay could detect residual teratoma forming cells within differentiated hESC populations however its sensitivity was decreased in the presence of differentiated cells. Our data lay the foundation, for standardization of a teratoma assay for pluripotency analysis. The assay can also be used for bio-safety analysis of pluripotent stem cell-derived differentiated progeny.  相似文献   

12.
The influence of extracellular matrix (Matrigel), collagen, and polylysine substrates on cell attachment and differentiation in 3T3-F442A preadipocytes was investigated. In comparison to an uncoated-polystyrene substrate, a concentrated Matrigel substrate (100 microg/cm2) markedly increased intracellular lipid level by about 30%, whereas a lower density Matrigel (10 microg/cm2) accelerated the differentiation rate but did not increase the amount of lipid 21 days after addition of adipogenic factors. Preadipocytes on the collagen surface differentiated less extensively than cells on the polystyrene. Polylysine did not effectively support attachment for either differentiated or undifferentiated cells. These results suggest that Matrigel provides the most suitable environment for both cell adhesion and differentiation for 3T3-F442A cells. This is in contrast to a previous report that extracellular matrix (from corneal endothelial cells) was detrimental to differentiation of 3T3-F442A cells.  相似文献   

13.
14.
Prior to differentiation, embryonic stem (ES) cells in culture are maintained in a so-called “undifferentiated” state, allowing derivation of multiple downstream cell lineages when induced in a directed manner, which in turn grants these cells their “pluripotent” state. The current work is based on a simple observation that the initial culture condition for maintaining mouse ES cells in an “undifferentiated” state does impact on the differentiation propensity of these cells, in this case to a neuronal fate. We point out the importance in judging the “pluripotency” of a given stem cell culture, as this clearly demonstrated that the “undifferentiated” state of these cells is not necessarily a “pluripotent” state, even for a widely used mouse ES cell line. We partly attribute this difference in the initial value of ES cells to the naïve-to-primed status of pluripotency, which in turn may affect early events of the differentiation in vitro.  相似文献   

15.
In muscle tissue, extracellular matrix proteins, together with the vasculature system, muscle-residence cells and muscle fibers, create the niche for muscle stem cells. The niche is important in controlling proliferation and directing differentiation of muscle stem cells to sustain muscle tissue. Mimicking the extracellular muscle environment improves tools exploring the behavior of primary muscle cells. Optimizing cell culture conditions to maintain muscle commitment is important in stem cell-based studies concerning toxicology screening, ex vivo skeletal muscle tissue engineering and in the enhancement of clinical efficiency. We used the muscle extracellular matrix proteins collagen type I, fibronectin, laminin, and also gelatin and Matrigel as surface coatings of tissue culture plastic to resemble the muscle extracellular matrix. Several important factors that determine myogenic commitment of the primary muscle cells were characterized by quantitative real-time RT-PCR and immunofluorescence. Adhesion of high PAX7 expressing satellite cells was improved if the cells were cultured on fibronectin or laminin coatings. Cells cultured on Matrigel and laminin coatings showed dominant integrin expression levels and exhibited an activated Wnt pathway. Under these conditions both stem cell proliferation and myogenic differentiation capacity were superior if compared to cells cultured on collagen type I, fibronectin and gelatin. In conclusion, Matrigel and laminin are the preferred coatings to sustain the proliferation and myogenic differentiation capacity of the primary porcine muscle stem cells, when cells are removed from their natural environment for in vitro culture.  相似文献   

16.
We have developed a novel three‐dimensional (3D) cellular microarray platform to enable the rapid and efficient tracking of stem cell fate and quantification of specific stem cell markers. This platform consists of a miniaturized 3D cell culture array on a functionalized glass slide for spatially addressable high‐throughput screening. A microarray spotter was used to deposit cells onto a modified glass surface to yield an array consisting of cells encapsulated in alginate gel spots with volumes as low as 60 nL. A method based on an immunofluorescence technique scaled down to function on a cellular microarray was also used to quantify specific cell marker protein levels in situ. Our results revealed that this platform is suitable for studying the expansion of mouse embryonic stem (ES) cells as they retain their pluripotent and undifferentiated state. We also examined neural commitment of mouse ES cells on the microarray and observed the generation of neuroectodermal precursor cells characterized by expression of the neural marker Sox‐1, whose levels were also measured in situ using a GFP reporter system. In addition, the high‐throughput capacity of the platform was tested using a dual‐slide system that allowed rapid screening of the effects of tretinoin and fibroblast growth factor‐4 (FGF‐4) on the pluripotency of mouse ES cells. This high‐throughput platform is a powerful new tool for investigating cellular mechanisms involved in stem cell expansion and differentiation and provides the basis for rapid identification of signals and conditions that can be used to direct cellular responses. Biotechnol. Bioeng. 2010; 106: 106–118. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
Much of the excitement generated by induced pluripotent stem cell technology is concerned with the possibility of disease modeling as well as the potential for personalized cell therapy. However, to pursue this it is important to understand the ‘normal’ pluripotent state including its inherent variability. We have performed various molecular profiling assays for 21 hESC lines and 8 hiPSC lines to generate a comprehensive snapshot of the undifferentiated state of pluripotent stem cells. Analysis of the gene expression data revealed no iPSC-specific gene expression pattern in accordance with previous reports. We further compared cells, differentiated as embryoid bodies in 2 media proposed to initiate differentiation towards separate cell fates, as well as 20 adult tissues. From this analysis we have generated a gene list which defines pluripotency and establishes a baseline for the pluripotent state. Finally, we provide lists of genes enriched under both differentiation conditions which show the proposed bias toward independent cell fates.  相似文献   

18.
19.
Tissue function during development and in regenerative medicine completely relies on correct cell organization and patterning at micro and macro scales. We describe a rapid method for patterning mammalian cells including human embryonic stem cells (HESCs) and induced pluripotent stem cells (iPSCs) on elastomeric membranes such that micron‐scale control of cell position can be achieved over centimeter‐length scales. Our method employs surface engineering of hydrophobic polydimethylsiloxane (PDMS) membranes by plasma polymerization of allylamine. Deposition of plasma polymerized allylamine (ppAAm) using our methods may be spatially restricted using a micro‐stencil leaving faithful hydrophilic ppAAm patterns. We employed airbrushing to create aerosols which deposit extracellular matrix (ECM) proteins (such as fibronectin and Matrigel?) onto the same patterned ppAAm rich regions. Cell patterns were created with a variety of well characterized cell lines (e.g., NIH‐3T3, C2C12, HL1, BJ6, HESC line HUES7, and HiPSC line IPS2). Individual and multiple cell line patterning were also achieved. Patterning remains faithful for several days and cells are viable and proliferate. To demonstrate the utility of our technique we have patterned cells in a variety of configurations. The ability to rapidly pattern cells at high resolution over macro scales should aid future tissue engineering efforts for regenerative medicine applications and in creating in vitro stem cell niches. Biotechnol. Bioeng. 2012; 109: 2630–2641. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号