首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mia40 is a recently identified oxidoreductase in the intermembrane space (IMS) of mitochondria that mediates protein import in an oxidation‐dependent reaction. Substrates of Mia40 that were identified so far are of simple structure and receive one or two disulphide bonds. Here we identified the protease Atp23 as a novel substrate of Mia40. Atp23 contains ten cysteine residues which are oxidized during several rounds of interaction with Mia40. In contrast to other Mia40 substrates, oxidation of Atp23 is not essential for its import; an Atp23 variant in which all ten cysteine residues were replaced by serine residues still accumulates in mitochondria in a Mia40‐dependent manner. In vitro Mia40 can mediate the folding of wild‐type Atp23 and prevents its aggregation. In these reactions, the hydrophobic substrate‐binding pocket of Mia40 was found to be essential for its chaperone‐like activity. Thus, Mia40 plays a much broader role in import and folding of polypeptides than previously expected and can serve as folding factor for proteins with complex disulphide patterns as well as for cysteine‐free polypeptides.  相似文献   

2.
The nucleocapsid, or core particle, of hepatitis B virus is formed by 180 subunits of the core protein, which contains Cys at positions 48, 61, 107 and 183, the latter constituting the C terminus. Upon adventitious oxidation, some or all of these cysteine residues participate in the formation of disulphide bridges, leading to polymerization of the subunits within the particle. To utilize the cysteine residues as topological probes, we reduced the number of possible intersubunit crosslinks by replacing these residues individually, or in all combinations, by serine. A corresponding set of variants was constructed within the context of an assembly-competent core protein variant that lacks the highly basic C-terminal region. Analysis, by polyacrylamide gel electrophoresis under non-reducing conditions, of the oxidative crosslinking products formed by the wild-type and mutant proteins expressed in Escherichia coli, revealed a clear distinction between the three N-proximal, and the C-terminal Cys: N-proximal Cys formed intermolecular disulphide bonds only with other N-proximal cysteine residues, leading to dimerization. Cys48 and Cys61, in contrast to Cys107, could be crosslinked to the homologous cysteine residues in a second subunit, and are therefore located at the dimer interface. Cys 183 predominantly formed disulphide bonds with Cys183 in subunits other than those crosslinked by the N-proximal cysteine residues. Hence, the polymers generated by oxidation of the wild-type protein are S-S-linked dimeric N-terminal domains interconnected via Cys183/Cys183 disulphide bonds. The intermolecular crosslinks between the N-proximal cysteine residues were apparently the same in the C-terminally truncated and in the full-length proteins, corroborating the model in which the N-terminal domain and the C terminus of the HBV core protein form two distinct and structurally independent entities. The strong tendency of the N-terminal domain for dimeric interactions suggests that core protein dimers are the major intermediates in hepatitis B virus nucleocapsid assembly.  相似文献   

3.
2SS[6‐127,64‐80] variant of lysozyme which has two disulfide bridges, Cys6‐Cys127 and Cys64‐Cys80, and lacks the other two disulfide bridges, Cys30‐Cys115 and Cys76‐Cys94, was quite unstructured in water, but a part of the polypeptide chain was gradually frozen into a native‐like conformation with increasing glycerol concentration. It was monitored from the protection factors of amide hydrogens against H/D exchange. In solution containing various concentrations of glycerol, H/D exchange reactions were carried out at pH* 3.0 and 4°C. Then, 1H‐15N‐HSQC spectra of partially deuterated protein were measured in a quenching buffer for H/D exchange (95% DMSO/5% D2O mixture at pH* 5.5 adjusted with dichloroacetate). In a solution of 10% glycerol, the protection factors were nearly equal to 10 at most of residues. With increasing glycerol concentration, some selected regions were further protected, and their protection factors reached about a 1000 in 30% glycerol solution. The highly protected residues were included in A‐, B‐, and C‐helices and β3‐strand, and especially centered on Ile 55 and Leu 56. In 2SS[6‐127,64‐80], long‐range interactions were recovered due to the preferential hydration by glycerol in the hydrophobic box of the α‐domain. Glycerol‐induced recovering of the native‐like structure is discussed from the viewpoint of molten globules growing with the protein folding. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 665–675, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

4.
Functionalized CdTe–CdS core–shell quantum dots (QDs) were synthesized in aqueous solution via water‐bathing combined hydrothermal method using L‐cysteine (L‐Cys) as a stabilizer. This method possesses both the advantages of water‐bathing and hydrothermal methods for preparing high‐quality QDs with markedly reduced synthesis time, and better stability than a lone hydrothermal method. The QDs were characterized by transmission electronic microscopy and powder X‐ray diffraction and X‐ray photoelectron spectroscopy. The CdTe–CdS QDs with core–shell structure showed both enhanced fluorescence and better photo stability than nude CdTe QDs. After conjugating with antibody rabbit anti‐CEACAM8 (CD67), the as‐prepared l ‐Cys capped CdTe–CdS QDs were successfully used as fluorescent probes for the direct immuno‐labeling and imaging of HeLa cells. It was indicated that this kind of QD would have application potential in bio‐labeling and cell imaging. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The Cys 2-Cys 10 disulfide bond in ribonuclease T1 was broken by substituting Cys 2 and Cys 10 by Ser and Asn, respectively, as present in ribonuclease F1. This C2S/C10N variant resembles the wild-type protein in structure and in catalytic activity. Minor structural changes were observed by 2-dimensional NMR in the local environment of the substituted amino acids only. The thermodynamic stability of ribonuclease T1 is strongly reduced by breaking the Cys 2-Cys 10 bond, and the free energy of denaturation is decreased by about 10 kJ/mol. The folding mechanism is not affected, and the trans to cis isomerizations of Pro 39 and Pro 55 are still the rate-limiting steps of the folding process. The differences in the time courses of unfolding and refolding are correlated with the decrease in stability: the folding kinetics of the wild-type protein and the C2S/C10N variant become indistinguishable when they are compared under conditions of identical stability. Apparently, the Cys 2-Cys 10 disulfide bond is important for the stability but not for the folding mechanism of ribonuclease T1. The breaking of this bond has the same effect on stability and folding kinetics as adding 1 M guanidinium chloride to the wild-type protein.  相似文献   

6.
BACKGROUND: Rop is an RNA binding, dimeric, four-helix bundle protein with a well-defined, regular hydrophobic core ideally suited for redesign studies. A family of Rop variants in which the hydrophobic core was systematically redesigned has previously been created and characterized. RESULTS: We present a structural and thermodynamic analysis of Ala2Ile2-6, a variant of Rop with an extensively redesigned hydrophobic core. The structure of Ala2Ile2-6 reveals a completely new fold formed by a conformational "flip" of the two protomers around the dimeric interface. The free-energy profile of Ala2Ile2-6 is also very different from that of wild-type Rop. Ala2Ile2-6 has a higher melting temperature than Rop, but undergoes a slightly smaller free-energy change on unfolding. CONCLUSIONS: The structure of Ala2Ile2-6, along with molecular modeling results, demonstrate the importance of tight packing of core residues and the adoption of favorable core side chain rotamer values in determining helix-helix interactions in the four-helix bundle fold. Structural disorder at the N and C termini of Ala2Ile2-6 provides a basis for the large differences in the enthalpy and entropy of Ala2Ile2-6 folding compared with wildtype Rop.  相似文献   

7.
Highly fluorinated analogs of hydrophobic amino acids are well known to increase the stability of proteins toward thermal unfolding and chemical denaturation, but there is very little data on the structural consequences of fluorination. We have determined the structures and folding energies of three variants of a de novo designed 4‐helix bundle protein whose hydrophobic cores contain either hexafluoroleucine (hFLeu) or t‐butylalanine (tBAla). Although the buried hydrophobic surface area is the same for all three proteins, the incorporation of tBAla causes a rearrangement of the core packing, resulting in the formation of a destabilizing hydrophobic cavity at the center of the protein. In contrast, incorporation of hFLeu, causes no changes in core packing with respect to the structure of the nonfluorinated parent protein which contains only leucine in the core. These results support the idea that fluorinated residues are especially effective at stabilizing proteins because they closely mimic the shape of the natural residues they replace while increasing buried hydrophobic surface area.  相似文献   

8.
A set of wild-type and mutant human, woodchuck, and duck hepatitis viral core proteins have been prepared and used to study the free thiol groups and the disulfide bonding pattern present within the core particle. Human (HBcAg) and woodchuck (WHcAg) core proteins contain 4 cysteine residues, whereas duck (DHcAg) core protein contains a single cysteine residue. Each of the cysteines of HBcAg has been eliminated, either singly or in combinations, by a two-step mutagenesis procedure. All of the proteins were shown to have very similar physical and immunochemical properties. All assemble into essentially identical core particle structures. Therefore disulfide bonds are not essential for core particle formation. No intra-chain disulfide bonds occur. Cys107 is a free thiol buried within the particle structure, whereas Cys48 is present partly as a free sulfhydryl which is exposed at the surface of the particle. Cys61 is always and Cys48 is partly involved in interchain disulfide bonds with the identical residues of another monomer, whereas Cys183 is always involved in a disulfide bond with the Cys183 of a different monomer. WHcAg has the same pattern of bonding, whereas DHcAg lacks any disulfide bonds, and the single free sulfhydryl, Cys153 which is equivalent to Cys107 of HBcAg, is buried.  相似文献   

9.
WD40‐repeat proteins are abundant and play important roles in forming protein complexes. The domain usually has seven WD40 repeats, which folds into a seven β‐sheet propeller with each β‐sheet in a four‐strand structure. An analysis of 20 available WD40‐repeat proteins in Protein Data Bank reveals that each protein has at least one Asp‐His‐Ser/Thr‐Trp (D‐H‐S/T‐W) hydrogen‐bonded tetrad, and some proteins have up to six or seven such tetrads. The relative positions of the four residues in the tetrads are also found to be conserved. A sequence alignment analysis of 560 WD40‐repeat protein sequences in human reveals very similar features, indicating that such tetrad may be a general feature of WD40‐repeat proteins. We carried out density functional theory and found that these tetrads can lead to significant stabilization including hydrogen‐bonding cooperativity. The hydrogen bond involving Trp is significant. These results lead us to propose that the tetrads may be critical to the stability and the mechanism of folding of these proteins. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Some disulfide bonds perform important structural roles in proteins, but another group has functional roles via redox reactions. Forbidden disulfides are stressed disulfides found in recognizable protein contexts, which currently constitute more than 10% of all disulfides in the PDB. They likely have functional redox roles and constitute a major subset of all redox‐active disulfides. The torsional strain of forbidden disulfides is typically higher than for structural disulfides, but not so high as to render them immediately susceptible to reduction under physionormal conditions. Previously we characterized the most abundant forbidden disulfide in the Protein Data Bank, the aCSDn: a canonical motif in which disulfide‐bonded cysteine residues are positioned directly opposite each other on adjacent anti‐parallel β‐strands such that the backbone hydrogen‐bonded moieties are directed away from each other. Here we perform a similar analysis for the aCSDh, a less common motif in which the opposed cysteine residues are backbone hydrogen bonded. Oxidation of two Cys in this context places significant strain on the protein system, with the β‐chains tilting toward each other to allow disulfide formation. Only left‐handed aCSDh conformations are compatible with the inherent right‐handed twist of β‐sheets. aCSDhs tend to be more highly strained than aCSDns, particularly when both hydrogen bonds are formed. We discuss characterized roles of aCSDh motifs in proteins of the dataset, which include catalytic disulfides in ribonucleotide reductase and ahpC peroxidase as well as a redox‐active disulfide in P1 lysozyme, involved in a major conformation change. The dataset also includes many binding proteins.  相似文献   

11.
HP36, the helical subdomain of villin headpiece, contains a hydrophobic core composed of three phenylalanine residues (Phe47, Phe51, and Phe58). Hydrophobic effects and electrostatic interactions were shown to be the critical factors in stabilizing this core and the global structure. To assess the interactions among Phe47, Phe51, and Phe58 residues and investigate how they affect the folding stability, we implanted 4‐fluorophenylalanine (Z) and 4‐methylphenylalanine (X) into the hydrophobic core of HP36. We chemically synthesized HP36 and its seven variants including four single mutants whose Phe51 or Phe58 was replaced with Z or X, and three double mutants whose Phe51 and Phe58 were both substituted. Circular dichroism and nuclear magnetic resonance measurements show that the variants exhibit a native HP36 like fold, of which F51Z and three double mutants are more stable than the wild type. Molecular modeling provided detailed interaction energy within the phenylalanine residues, revealing that electrostatic interactions dominate the stability modulation upon the introduction of 4‐fluorophenylalanine and 4‐methylphenylalanine. Our results show that these two non‐natural amino acids can successfully tune the interactions in a relatively compact hydrophobic core and the folding stability without inducing dramatic steric effects. Such an approach may be applied to other folded motifs or proteins. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 627–637, 2015.  相似文献   

12.
Protein folding has been studied extensively for decades, yet our ability to predict how proteins reach their native state from a mechanistic perspective is still rudimentary at best, limiting our understanding of folding‐related processes in vivo and our ability to manipulate proteins in vitro. Here, we investigate the in vitro refolding mechanism of a large β‐helix protein, pertactin, which has an extended, elongated shape. At 55 kDa, this single domain, all‐β‐sheet protein allows detailed analysis of the formation of β‐sheet structure in larger proteins. Using a combination of fluorescence and far‐UV circular dichroism spectroscopy, we show that the pertactin β‐helix refolds remarkably slowly, with multiexponential kinetics. Surprisingly, despite the slow refolding rates, large size, and β‐sheet‐rich topology, pertactin refolding is reversible and not complicated by off‐pathway aggregation. The slow pertactin refolding rate is not limited by proline isomerization, and 30% of secondary structure formation occurs within the rate‐limiting step. Furthermore, site‐specific labeling experiments indicate that the β‐helix refolds in a multistep but concerted process involving the entire protein, rather than via initial formation of the stable core substructure observed in equilibrium titrations. Hence pertactin provides a valuable system for studying the refolding properties of larger, β‐sheet‐rich proteins, and raises intriguing questions regarding the prevention of aggregation during the prolonged population of partially folded, β‐sheet‐rich refolding intermediates. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
To elucidate the effects of specific disulfide bridges (Cys6‐Cys127, Cys30‐Cys115, Cys64‐Cys80, and Cys76‐Cys94) on the secondary structure of hen lysozyme, the vacuum‐ultraviolet circular dichroism (VUVCD) spectra of 13 species of disulfide‐deficient variants in which Cys residues were replaced with Ala or Ser residues were measured down to 170 nm at pH 2.9 and 25°C using a synchrotron‐radiation VUVCD spectrophotometer. Each variant exhibited a VUVCD spectrum characteristic of a considerable amount of residual secondary structures depending on the positions and numbers of deleted disulfide bridges. The contents of α‐helices, β‐strands, turns, and unordered structures were estimated with the SELCON3 program using the VUVCD spectra and PDB data of 31 reference proteins. The numbers of α‐helix and β‐strand segments were also estimated from the VUVCD data. In general, the secondary structures were more effectively stabilized through entropic forces as the number of disulfide bridges increased and as they were formed over larger distances in the primary structure. The structures of three‐disulfide variants were similar to that of the wild type, but other variants exhibited diminished α‐helices with a border between the ordered and disordered structures around the two‐disulfide variants. The sequences of the secondary structures were predicted for all the variants by combining VUVCD data with a neural‐network method. These results revealed the characteristic role of each disulfide bridge in the formation of secondary structures. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
The III-A intermediate constitutes the major rate-determining step in the oxidative folding of leech carboxypeptidase inhibitor (LCI). In this work, III-A has been directly purified from the folding reaction and structurally characterized by NMR spectroscopy. This species, containing three native disulfides, displays a highly native-like structure; however, it lacks some secondary structure elements, making it more flexible than native LCI. III-A represents a structurally determined example of a disulfide-insecure intermediate; direct oxidation of this species to the fully native protein seems to be restricted by the burial of its two free cysteine residues inside a native-like structure. We also show that theoretical approaches based on topological constraints predict with good accuracy the presence of this folding intermediate. Overall, the derived results suggest that, as it occurs with non-disulfide bonded proteins, native-like interactions between segments of secondary structure rather than the crosslinking of disulfide bonds direct the folding of LCI.  相似文献   

15.
Very little is known about the character or functional relevance of hydrogen-bonded cysteine sulfhydryl (S-H) groups in proteins. The Raman S-H band is a unique and sensitive probe of the local S-H environment. Here, we report the use of Raman spectroscopy combined with site-specific mutagenesis to document the existence of five distinguishable hydrogen-bonded states of buried cysteine sulfhydryl groups in a native protein. The 666 residue subunit of the Salmonella typhimurium bacteriophage P22 tailspike contains eight cysteine residues distributed through the elongated structure. The tailspike cysteine residues display an unusual Raman S-H band complex (2500-2600 cm(-1) interval) indicative of diverse S-H hydrogen-bonding interactions in the native trimeric structure. To resolve specific Cys contributions to the complex Raman band we characterized a set of tailspike proteins with each cysteine replaced by a serine. The mutant proteins, once folded, were structurally and functionally indistinguishable from wild-type tailspikes, except for their Raman S-H signatures. Comparison of the Raman spectra of the mutant and wild-type proteins reveals the following hydrogen-bond classes for cysteine sulfhydryl groups. (i) Cys613 forms the strongest S-H...X bond of the tailspike, stronger than any heretofore observed for a protein. (ii) Cys267, Cys287 and Cys458 form robust S-H...X bonds. (iii) Moderate S-H...X bonding occurs for Cys169 and Cys635. (iv) Cys290 and Cys496 form weak hydrogen bonds. (v) It is remarkable that Cys287 contributes two Raman S-H markers, indicating the population of two distinct hydrogen-bonding states. The sum of the S-H Raman signatures of all eight mutants accurately reproduces the composite Raman band of the wild-type tailspike. The diverse cysteine states may be an outcome of the folding and assembly pathway of the tailspike, which though lacking disulfide bonds in the native state, utilizes transient disulfide bonds in the maturation pathway. This Raman study represents the first detailed assessment of local S-H hydrogen bonding in a native protein and provides information not obtainable directly by other structural probes. The method employed here should be applicable to a wide range of cysteine-containing proteins.  相似文献   

16.
Protein secretion is a major contributor to Gram‐negative bacterial virulence. Type Vb or two‐partner secretion (TPS) pathways utilize a membrane bound β‐barrel B component (TpsB) to translocate large and predominantly virulent exoproteins (TpsA) through a nucleotide independent mechanism. We focused our studies on a truncated TpsA member termed hemolysin A (HpmA265), a structurally and functionally characterized TPS domain from Proteus mirabilis. Contrary to the expectation that the TPS domain of HpmA265 would denature in a single cooperative transition, we found that the unfolding follows a sequential model with three distinct transitions linking four states. The solvent inaccessible core of HpmA265 can be divided into two different regions. The C‐proximal region contains nonpolar residues and forms a prototypical hydrophobic core as found in globular proteins. The N‐proximal region of the solvent inaccessible core, however, contains polar residues. To understand the contributions of the hydrophobic and polar interiors to overall TPS domain stability, we conducted unfolding studies on HpmA265 and site‐specific mutants of HpmA265. By correlating the effect of individual site‐specific mutations with the sequential unfolding results we were able to divide the HpmA265 TPS domain into polar core, nonpolar core, and C‐terminal subdomains. Moreover, the unfolding studies provide quantitative evidence that the folding free energy for the polar core subdomain is more favorable than for the nonpolar core and C‐terminal subdomains. This study implicates the hydrogen bonds shared among these conserved internal residues as a primary means for stabilizing the N‐proximal polar core subdomain.  相似文献   

17.
Redesigning the hydrophobic core of a four-helix-bundle protein.   总被引:13,自引:11,他引:2       下载免费PDF全文
Rationally redesigned variants of the 4-helix-bundle protein Rop are described. The novel proteins have simplified, repacked, hydrophobic cores and yet reproduce the structure and native-like physical properties of the wild-type protein. The repacked proteins have been characterized thermodynamically and their equilibrium and kinetic thermal and chemical unfolding properties are compared with those of wild-type Rop. The equilibrium stability of the repacked proteins to thermal denaturation is enhanced relative to that of the wild-type protein. The rate of chemically induced folding and unfolding of wild-type Rop is extremely slow when compared with other small proteins. Interestingly, although the repacked proteins are more thermally stable than the wild type, their rates of chemically induced folding and unfolding are greatly increased in comparison to wild type. Perhaps as a consequence of this, their equilibrium stabilities to chemical denaturants are slightly reduced in comparison to the wild type.  相似文献   

18.
The antiphospholipid syndrome (APS) is a severe autoimmune disease associated with recurrent thrombosis and fetal loss and characterized by the presence of circulating autoantibodies (aAbs) mainly recognizing the N‐terminal domain (DmI) of β2‐glycoprotein I (β2GpI). To possibly block anti‐β2GpI Abs activity, we synthesized the entire DmI comprising residues 1–64 of β2GpI by chemical methods. Oxidative disulfide renaturation of DmI was achieved in the presence of reduced and oxidized glutathione. The folded DmI (N‐DmI) was purified by RP‐HPLC, and its chemical identity and correct disulfide pairing (Cys4‐Cys47 and Cys32‐Cys60) were established by enzymatic peptide mass fingerprint analysis. The results of the conformational characterization, conducted by far‐ and near‐UV CD and fluorescence spectroscopy, provided strong evidence for the native‐like structure of DmI, which is also quite resistant to both Gdn‐HCl and thermal denaturation. However, the thermodynamic stability of N‐DmI at 37°C was remarkably low, in agreement with the unfolding energetics of small proteins. Of note, aAbs failed to bind to plates coated with N‐DmI in direct binding experiments. From ELISA competition experiments with plate‐immobilized β2GpI, a mean IC50 value of 8.8 μM could be estimated for N‐DmI, similar to that of the full‐length protein, IC50(β2GpI) = 6.4 μM, whereas the cysteine‐reduced and carboxamidomethylated DmI, RC‐DmI, failed to bind to anti‐β2GpI Abs. The versatility of chemical synthesis was also exploited to produce an N‐terminally biotin‐(PEG)2‐derivative of N‐DmI (Biotin‐N‐DmI) to be possibly used as a new tool in APS diagnosis. Strikingly, Biotin‐N‐DmI loaded onto a streptavidin‐coated plate selectively recognized aAbs from APS patients.  相似文献   

19.
The oxidation of a key cysteine residue (Cys106) in the parkinsonism‐associated protein DJ‐1 regulates its ability to protect against oxidative stress and mitochondrial damage. Cys106 interacts with a neighboring protonated Glu18 residue, stabilizing the Cys106‐SO2? (sulfinic acid) form of DJ‐1. To study this important post‐translational modification, we previously designed several Glu18 mutations (E18N, E18D, E18Q) that alter the oxidative propensity of Cys106. However, recent results suggest these Glu18 mutations cause loss of DJ‐1 dimerization, which would severely compromise the protein's function. The purpose of this study was to conclusively determine the oligomerization state of these mutants using X‐ray crystallography, NMR spectroscopy, thermal stability analysis, circular dichroism spectroscopy, sedimentation equilibrium ultracentrifugation, and cross‐linking. We found that all of the Glu18 DJ‐1 mutants were dimeric. Thiol cross‐linking indicates that these mutant dimers are more flexible than the wild‐type protein and can form multiple cross‐linked dimeric species due to the transient exposure of cysteine residues that are inaccessible in the wild‐type protein. The enhanced flexibility of Glu18 DJ‐1 mutants provides a parsimonious explanation for their lower observed cross‐linking efficiency in cells. In addition, thiol cross‐linkers may have an underappreciated value as qualitative probes of protein conformational flexibility.

  相似文献   


20.
Human age‐onset cataracts are believed to be caused by the aggregation of partially unfolded or covalently damaged lens crystallin proteins; however, the exact molecular mechanism remains largely unknown. We have used microseconds of molecular dynamics simulations with explicit solvent to investigate the unfolding process of human lens γD‐crystallin protein and its isolated domains. A partially unfolded folding intermediate of γD‐crystallin is detected in simulations with its C‐terminal domain (C‐td) folded and N‐terminal domain (N‐td) unstructured, in excellent agreement with biochemical experiments. Our simulations strongly indicate that the stability and the folding mechanism of the N‐td are regulated by the interdomain interactions, consistent with experimental observations. A hydrophobic folding core was identified within the C‐td that is comprised of a and b strands from the Greek key motif 4, the one near the domain interface. Detailed analyses reveal a surprising non‐native surface salt‐bridge between Glu135 and Arg142 located at the end of the ab folded hairpin turn playing a critical role in stabilizing the folding core. On the other hand, an in silico single E135A substitution that disrupts this non‐native Glu135‐Arg142 salt‐bridge causes significant destabilization to the folding core of the isolated C‐td, which, in turn, induces unfolding of the N‐td interface. These findings indicate that certain highly conserved charged residues, that is, Glu135 and Arg142, of γD‐crystallin are crucial for stabilizing its hydrophobic domain interface in native conformation, and disruption of charges on the γD‐crystallin surface might lead to unfolding and subsequent aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号