首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipoteichoic acid (LTA) is an important cell wall component of Gram‐positive bacteria. In Staphylococcus aureus it consists of a polyglycerolphosphate‐chain that is retained within the membrane via a glycolipid. Using an immunofluorescence approach, we show here that the LTA polymer is not surface exposed in S. aureus, as it can only be detected after digestion of the peptidoglycan layer. S. aureus mutants lacking LTA are enlarged and show aberrant positioning of septa, suggesting a link between LTA synthesis and the cell division process. Using a bacterial two‐hybrid approach, we show that the three key LTA synthesis proteins, YpfP and LtaA, involved in glycolipid production, and LtaS, required for LTA backbone synthesis, interact with one another. All three proteins also interacted with numerous cell division and peptidoglycan synthesis proteins, suggesting the formation of a multi‐enzyme complex and providing further evidence for the co‐ordination of these processes. When assessed by fluorescence microscopy, YpfP and LtaA fluorescent protein fusions localized to the membrane while the LtaS enzyme accumulated at the cell division site. These data support a model whereby LTA backbone synthesis proceeds in S. aureus at the division site in co‐ordination with cell division, while glycolipid synthesis takes place throughout the membrane.  相似文献   

2.
The Sbi protein of Staphylococcus aureus comprises two IgG‐binding domains similar to those of protein A and a region that triggers the activation of complement C3. Sbi is expressed on the cell surface but its C‐terminal domain lacks motifs associated with wall or membrane anchoring of proteins in Gram‐positive bacteria. Cell‐associated Sbi fractionates with the cytoplasmic membrane and is not solubilized during protoplast formation. S. aureus expressing Sbi truncates of the C‐terminal Y domain allowed identification of residues that are required for association of Sbi with the membrane. Recombinant Sbi bound to purified cytoplasmic membrane material in vitro and to purified lipoteichoic acid. This explains how Sbi partitions with the membrane in fractionation experiments yet is partially exposed on the cell surface. An LTA‐defective mutant of S. aureus had reduced levels of Sbi in the cytoplasmic membrane.  相似文献   

3.
Proteolytic treatment of intact bacterial cells is an ideal means for identifying surface‐exposed peptide epitopes and has potential for the discovery of novel vaccine targets. Cell stability during such treatment, however, may become compromised and result in the release of intracellular proteins that complicate the final analysis. Staphylococcus aureus is a major human pathogen, causing community and hospital‐acquired infections, and is a serious healthcare concern due to the increasing prevalence of multiple antibiotic resistances amongst clinical isolates. We employed a cell surface “shaving” technique with either trypsin or proteinase‐K combined with LC‐MS/MS. Trypsin‐derived data were controlled using a “false‐positive” strategy where cells were incubated without protease, removed by centrifugation and the resulting supernatants digested. Peptides identified in this fraction most likely result from cell lysis and were removed from the trypsin‐shaved data set. We identified 42 predicted S. aureus COL surface proteins from 260 surface‐exposed peptides. Trypsin and proteinase‐K digests were highly complementary with ten proteins identified by both, 16 specific to proteinase‐K treatment, 13 specific to trypsin and three identified in the control. The use of a subtracted false‐positive strategy improved enrichment of surface‐exposed peptides in the trypsin data set to approximately 80% (124/155 peptides). Predominant surface proteins were those associated with methicillin resistance–surface protein SACOL0050 (pls) and penicillin‐binding protein 2′ (mecA), as well as bifunctional autolysin and the extracellular matrix‐binding protein Ebh. The cell shaving strategy is a rapid method for identifying surface‐exposed peptide epitopes that may be useful in the design of novel vaccines against S. aureus.  相似文献   

4.
Invasive Staphylococcus aureus infection frequently involves bacterial seeding from the bloodstream to other body tissues, a process necessarily involving interactions between circulating bacteria and vascular endothelial cells. Staphylococcus aureus fibronectin‐binding protein is central to the invasion of endothelium, fibronectin forming a bridge between bacterial fibronectin‐binding proteins and host cell receptors. To dissect further the mechanisms of invasion of endothelial cells by S. aureus, a series of truncated FnBPA proteins that lacked one or more of the A, B, C or D regions were expressed on the surface of S. aureus and tested in fibronectin adhesion, endothelial cell adhesion and invasion assays. We found that this protein has multiple, substituting, fibronectin‐binding regions, each capable of conferring both adherence to fibronectin and endothelial cells, and endothelial cell invasion. By expressing S. aureus FnBPA on the surface of the non‐invasive Gram‐positive organism Lactococcus lactis, we have found that no other bacterial factor is required for invasion. Furthermore, we have demonstrated that, as with other cell types, invasion of endothelial cells is mediated by integrin α5β1. These findings may be of relevance to the development of preventive measures against systemic infection, and bacterial spread in the bacteraemic patient.  相似文献   

5.
Although archaea, Gram‐negative bacteria, and mammalian cells constitutively secrete membrane vesicles (MVs) as a mechanism for cell‐free intercellular communication, this cellular process has been overlooked in Gram‐positive bacteria. Here, we found for the first time that Gram‐positive bacteria naturally produce MVs into the extracellular milieu. Further characterizations showed that the density and size of Staphylococcus aureus‐derived MVs are both similar to those of Gram‐negative bacteria. With a proteomics approach, we identified with high confidence a total of 90 protein components of S. aureus‐derived MVs. In the group of identified proteins, the highly enriched extracellular proteins suggested that a specific sorting mechanism for vesicular proteins exists. We also identified proteins that facilitate the transfer of proteins to other bacteria, as well to eliminate competing organisms, antibiotic resistance, pathological functions in systemic infections, and MV biogenesis. Taken together, these observations suggest that the secretion of MVs is an evolutionally conserved, universal process that occurs from simple organisms to complex multicellular organisms. This information will help us not only to elucidate the biogenesis and functions of MVs, but also to develop therapeutic tools for vaccines, diagnosis, and antibiotics effective against pathogenic strains of Gram‐positive bacteria.  相似文献   

6.
Sortase enzymes are vitally important for the virulence of gram‐positive bacteria as they play a key role in the attachment of surface proteins to the cell wall. These enzymes recognize a specific sorting sequence in proteins destined to be displayed on the surface of the bacteria and catalyze the transpeptidation reaction that links it to a cell wall precursor molecule. Because of their role in establishing pathogenicity, and in light of the recent rise of antibiotic‐resistant bacterial strains, sortase enzymes are novel drug targets. Here, we present a study of the prototypical sortase protein Staphylococcus aureus Sortase A (SrtA). Both conventional and accelerated molecular dynamics simulations of S. aureus SrtA in its apo state and when bound to an LPATG sorting signal (SS) were performed. Results support a binding mechanism that may be characterized as conformational selection followed by induced fit. Additionally, the SS was found to adopt multiple metastable states, thus resolving discrepancies between binding conformations in previously reported experimental structures. Finally, correlation analysis reveals that the SS actively affects allosteric pathways throughout the protein that connect the first and the second substrate binding sites, which are proposed to be located on opposing faces of the protein. Overall, these calculations shed new light on the role of dynamics in the binding mechanism and function of sortase enzymes.  相似文献   

7.
Staphylococcus aureus does not produce the low‐molecular‐weight (LMW) thiol glutathione, but it does produce the LMW thiol bacillithiol (BSH). To better understand the roles that BSH plays in staphylococcal metabolism, we constructed and examined strains lacking BSH. Phenotypic analysis found that the BSH‐deficient strains cultured either aerobically or anaerobically had growth defects that were alleviated by the addition of exogenous iron (Fe) or the amino acids leucine and isoleucine. The activities of the iron–sulfur (Fe–S) cluster‐dependent enzymes LeuCD and IlvD, which are required for the biosynthesis of leucine and isoleucine, were decreased in strains lacking BSH. The BSH‐deficient cells also had decreased aconitase and glutamate synthase activities, suggesting a general defect in Fe–S cluster biogenesis. The phenotypes of the BSH‐deficient strains were exacerbated in strains lacking the Fe–S cluster carrier Nfu and partially suppressed by multicopy expression of either sufA or nfu, suggesting functional overlap between BSH and Fe–S carrier proteins. Biochemical analysis found that SufA bound and transferred Fe–S clusters to apo‐aconitase, verifying that it serves as an Fe–S cluster carrier. The results presented are consistent with the hypothesis that BSH has roles in Fe homeostasis and the carriage of Fe–S clusters to apo‐proteins in S. aureus.  相似文献   

8.
Two series of carbazole analogs of 8‐methoxy‐N‐substituted‐9H‐carbazole‐3‐carboxamides (series 1) and carbazolyl substituted rhodanines (series 2) were synthesized through facile synthetic routes. All the final compounds from these two series were evaluated for their preliminary in vitro antifungal and antibacterial activity against four fungal (Candida albicans, Cryptococcus neoformans, Cryptococcus tropicalis and Aspergillus niger) and four bacterial (Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa) strains, respectively. Among the tested compounds, three compounds of series 1 displayed promising antifungal and antibacterial activity, especially against C. neoformans and S. aureus. In addition, one compound of series 1 displayed notable antimicrobial activity (MIC: 6.25 μg/mL) against clinical isolates of C. albicans and C. neoformans (MIC: 12.5 μg/mL). From the second series, four compounds exhibited significant antifungal and antibacterial activity, especially against C. neoformans and S. aureus. The most active compound of series 2 displayed a prominent antimicrobial activity against C. neoformans (MIC: 3.125 μg/mL) and S. aureus (MIC: 1.56 μg/mL), respectively.  相似文献   

9.
10.
Staphylococcus (S.) aureus is a frequent cause of severe skin infections. The ability to control the infection is largely dependent on the rapid recruitment of neutrophils (PMN). To gain more insight into the dynamics of PMN migration and host–pathogen interactions in vivo, we used intravital two‐photon (2‐P) microscopy to visualize S. aureus skin infections in the mouse. Reporter S. aureus strains expressing fluorescent proteins were developed, which allowed for detection of the bacteria in vivo. By employing LysM‐EGFP mice to visualize PMN, we observed the rapid appearance of PMN in the extravascular space of the dermis and their directed movement towards the focus of infection, which led to the delineation of an abscess within 1 day. Moreover, tracking of transferred labelled bone‐marrow neutrophils showed that PMN localization to the site of infection is dependent on the presence of G‐protein‐coupled receptors on the PMN, whereas Interleukin‐1 receptor was required on host cells other than PMN. Furthermore, the S. aureus complement inhibitor Ecb could block PMN accumulation at thesite of infection. Our results establish that 2‐P microscopy is a powerful tool to investigate the orchestration of the immune cells, S. aureus location and gene expression in vivo on a single cell level.  相似文献   

11.
In this article, three series of dihydrotriazine derivatives bearing a quinoline moiety ( 5a , 5b , 8a – 8c , and 9a – 9m ) have been designed, synthesized, and evaluated as antibacterial agents. Compounds 8a – 8c were found to be the most potent of all of the compounds tested with an MIC value of 1 μg/mL against several Gram‐positive (S. aureus 4220 and MRSA CCARM 3506) and Gram‐negative (E. coli 1924) strains of bacteria. In addition, 3‐[4‐amino‐6‐(phenethylamino)‐2,5‐dihydro‐1,3,5‐triazin‐2‐yl)‐6‐[(3‐chlorobenzyl)oxy]quinolin‐2‐ol ( 8a ) showed potent inhibitory activity (MIC=2 μg/mL) against Pseudomonas aeruginosa 2742, indicating that its antibacterial spectrum is similar to those of the positive controls gatifloxacin and moxifloxacin. Structure‐activity relationships (SAR) analyses and docking studies implicated the dihydrotriazine group in increasing the antimicrobial potency of the quinoline compounds. In vitro enzyme study implied that compound 8a also displayed DHFR inhibition.  相似文献   

12.
Staphylococcus aureus is a facultative intracellular pathogen. Recently, it has been shown that the protein part of the lipoprotein‐like lipoproteins (Lpls), encoded by the lpl cluster comprising of 10 lpls paralogue genes, increases pathogenicity, delays the G2/M phase transition, and also triggers host cell invasion. Here, we show that a recombinant Lpl1 protein without the lipid moiety binds directly to the isoforms of the human heat shock proteins Hsp90α and Hsp90ß. Synthetic peptides covering the Lpl1 sequence caused a twofold to fivefold increase of S. aureus invasion in HaCaT cells. Antibodies against Hsp90 decrease S. aureus invasion in HaCaT cells and in primary human keratinocytes. Additionally, inhibition of ATPase function of Hsp90 or silencing Hsp90α expression by siRNA also decreased the S. aureus invasion in HaCaT cells. Although the Hsp90ß is constitutively expressed, the Hsp90α isoform is heat‐inducible and appears to play a major role in Lpl1 interaction. Pre‐incubation of HaCaT cells at 39°C increased both the Hsp90α expression and S. aureus invasion. Lpl1‐Hsp90 interaction induces F‐actin formation, thus, triggering an endocytosis‐like internalisation. Here, we uncovered a new host cell invasion principle on the basis of Lpl‐Hsp90 interaction.  相似文献   

13.
The Type VII protein secretion system, found in Gram‐positive bacteria, secretes small proteins, containing a conserved W‐x‐G amino acid sequence motif, to the growth medium. Staphylococcus aureus has a conserved Type VII secretion system, termed Ess, which is dispensable for laboratory growth but required for virulence. In this study we show that there are unexpected differences in the organization of the ess gene cluster between closely related strains of S. aureus. We further show that in laboratory growth medium different strains of S. aureus secrete the EsxA and EsxC substrate proteins at different growth points, and that the Ess system in strain Newman is inactive under these conditions. Systematic deletion analysis in S. aureus RN6390 is consistent with the EsaA, EsaB, EssA, EssB, EssC and EsxA proteins comprising core components of the secretion machinery in this strain. Finally we demonstrate that the Ess secretion machinery of two S. aureus strains, RN6390 and COL, is important for nasal colonization and virulence in the murine lung pneumonia model. Surprisingly, however, the secretion system plays no role in the virulence of strain SA113 under the same conditions.  相似文献   

14.
A novel benzimidazole molecule that was identified in a small‐molecule screen and is known as antibiofilm compound 1 (ABC‐1) has been found to prevent bacterial biofilm formation by multiple bacterial pathogens, including Staphylococcus aureus, without affecting bacterial growth. Here, the biofilm inhibiting ability of 156 μM ABC‐1 was tested in various biofilm‐forming strains of S. aureus. It was demonstrated that ABC‐1 inhibits biofilm formation by these strains at micromolar concentrations regardless of the strains' dependence on Polysaccharide Intercellular Adhesin (PIA), cell wall‐associated protein dependent or cell wall‐ associated extracellular DNA (eDNA). Of note, ABC‐1 treatment primarily inhibited Protein A (SpA) expression in all strains tested. spa gene disruption showed decreased biofilm formation; however, the mutants still produced more biofilm than ABC‐1 treated strains, implying that ABC‐1 affects not only SpA but also other factors. Indeed, ABC‐1 also attenuated the accumulation of PIA and eDNA on cell surface. Our results suggest that ABC‐1 has pleotropic effects on several biofilm components and thus inhibits biofilm formation by S. aureus.  相似文献   

15.
Staphylococcus aureus is a bacterial pathogen responsible for a wide range of diseases and is also a human commensal colonizing the upper respiratory tract. Strains belonging to the clonal complex group CC30 are associated with colonization, although the colonization state itself is not clearly defined. In this work, we developed a co‐culture model with S. aureus colonizing the apical surface of polarized human airway epithelial cells. The S. aureus are grown at the air–liquid interface to allow an in‐depth evaluation of a simulated colonization state. Exposure to wild‐type, S. aureus bacteria or conditioned media killed airway epithelial cells within 1 day, while mutant S. aureus strains lacking alpha‐toxin (hla) persisted on viable cells for at least 2 days. Recent S. aureus CC30 isolates are natural hla mutants, and we observed that these strains displayed reduced toxicity toward airway epithelial cells. Quantitative real‐time polymerase chain reaction of known virulence factors showed the expression profile of S. aureus grown in co‐culture correlates with results from previous human colonization studies. Microarray analysis indicated significant shifts in S. aureus physiology in the co‐culture model toward lipid and amino acid metabolism. The development of the in vitro colonization model will enable further study of specific S. aureus interactions with the host epithelia.  相似文献   

16.
Neutrophils store large quantities of neutrophil serine proteases (NSPs) that contribute, via multiple mechanisms, to antibacterial immune defences. Even though neutrophils are indispensable in fighting Staphylococcus aureus infections, the importance of NSPs in anti‐staphylococcal defence is yet unknown. However, the fact that S. aureus produces three highly specific inhibitors for NSPs [the extracellular adherence proteins (EAPs) Eap, EapH1 and EapH2], suggests that these proteases are important for host defences against this bacterium. In this study we demonstrate that NSPs can inactivate secreted virulence factors of S. aureus and that EAP proteins function to prevent this degradation. Specifically, we find that a large group of S. aureus immune‐evasion proteins is vulnerable to proteolytic inactivation by NSPs. In most cases, NSP cleavage leads to functional inactivation of virulence proteins. Interestingly, proteins with similar immune‐escape functions appeared to have differential cleavage sensitivity towards NSPs. Using targeted mutagenesis and complementation analyses in S. aureus, we demonstrate that all EAP proteins can protect other virulence factors from NSP degradation in complex bacterial supernatants. These findings show that NSPs inactivate S. aureus virulence factors. Moreover, the protection by EAP proteins can explain why this antibacterial function of NSPs was masked in previous studies. Furthermore, our results indicate that therapeutic inactivation of EAP proteins can help to restore the natural host immune defences against S. aureus.  相似文献   

17.
Triosephosphate isomerase (TPI; EC 5. 3. 1. 1) displayed on the cell surface of Staphylococcus aureus acts as an adhesion molecule that binds to the capsule of Cryptococcus neoformans, a fungal pathogen. This study investigated the function of TPI on the cell surface of S. aureus and its interactions with biological substances such as fibronectin, fibrinogen, plasminogen, and thrombin were investigated. Binding of TPI to plasminogen was demonstrated by both surface plasmon resonance analysis and Far‐Western blotting. It is suggested that lysine residues contribute to this binding because the interaction was inhibited by ?‐aminocaproic acid. Activation of plasminogen to plasmin by staphylokinase or tissue plasminogen activator decreased in the presence of TPI, whereas TPI was degraded by plasmin. In other experiments, intact S. aureus cells had the ability to both increase and decrease plasminogen activation depending on the number of cells. Several molecules expressed on the surface of S. aureus were predicted to interact with plasminogen, resulting in its increased or decreased activation. These findings indicate that S. aureus sometimes localizes and sometimes disseminates in the host, depending on the molecules expressed under various conditions.  相似文献   

18.
Streptomyces scabies is a model organism for the investigation of plant–microbe interactions in Gram‐positive bacteria. Here, we investigate the type VII protein secretion system (T7SS) in S. scabies; the T7SS is required for the virulence of other Gram‐positive bacteria, including Mycobacterium tuberculosis and Staphylococcus aureus. The hallmarks of a functional T7SS are an EccC protein that forms an essential component of the secretion apparatus and two small, sequence‐related substrate proteins, EsxA and EsxB. A putative transmembrane protein, EccD, may also be associated with T7S in Actinobacteria. In this study, we constructed strains of the plant pathogen S. scabies carrying marked mutations in genes coding for EccC, EccD, EsxA and EsxB. Unexpectedly, we showed that all four mutant strains retain full virulence towards several plant hosts. However, disruption of the esxA or esxB, but not eccC or eccD, genes affects S. scabies development, including a delay in sporulation, abnormal spore chains and resistance to lysis by the Streptomyces‐specific phage ?C31. We further showed that these phenotypes are specific to the loss of the T7SS substrate proteins EsxA and EsxB, and are not observed when components of the T7SS secretion machinery are lacking. Taken together, these results imply an unexpected intracellular role for EsxA and EsxB.  相似文献   

19.
Staphylococcus aureus (S. aureus) is a human pathogen that relies on the subversion of host phagocytes to support its pathogenic lifestyle. S. aureus strains can produce up to five beta‐barrel, bi‐component, pore‐forming leukocidins that target and kill host phagocytes. Thus, preventing immune cell killing by these toxins is likely to boost host immunity. Here, we describe the identification of glycine‐rich motifs within the membrane‐penetrating stem domains of the leukocidin subunits that are critical for killing primary human neutrophils. Remarkably, leukocidins lacking these glycine‐rich motifs exhibit dominant‐negative inhibitory effects toward their wild‐type toxin counterparts as well as other leukocidins. Biochemical and cellular assays revealed that these dominant‐negative toxins work by forming mixed complexes that are impaired in pore formation. The dominant‐negative leukocidins inhibited S. aureus cytotoxicity toward primary human neutrophils, protected mice from lethal challenge by wild‐type leukocidin, and reduced bacterial burden in a murine model of bloodstream infection. Thus, we describe the first example of staphylococcal bi‐component dominant‐negative toxins and their potential as novel therapeutics to combat S. aureus infection.  相似文献   

20.
Bovine mastitis is an infectious disease of the mammary glands of dairy cattle primarily causaled by the bacterium, Staphylococcus aureus subsp. aureus Rosenbach1884. Traditional control of this organism was through the use of antibiotics. However, S. aureus is developing resistance towards these chemotherapeutic agents faster than they are being developed. Bacteriophages can serve as an alternative control measure for the disease. This study investigated the prevalence of phages and S. aureus within the South African dairy environment, as well as infectivity of phage isolates against antibiotic-resistant S. aureus. The four S. aureus strains used in the study displayed resistance to representative antibiotics from both the β-lactamases and non-β-lactamases, macrolides, aminoglycosides and glycopeptides. Susceptibility was only noted towards the tetracycline antibiotics. Twenty-eight phages were isolated and screened against four strains of S. aureus. Only six phages showed biocontrol potential based on their wide host range, high titres and common growth requirements. Morphological and preliminary genomic analysis was carried out on the three best performing phages. At an optimal titre of between 6.2 × 107 and 2.9 × 108 pfu.ml?1, the phages were able to reduce live bacterial cell counts between 64% and 95%. In addition, these six phages showed further infectivity towards S. aureus strains that were isolated from different milk-producing regions during a farm survey. The phages isolated in this study show reasonable potential for in vivo applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号