首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Focal adhesion kinase (FAK) controls adhesion‐dependent cell motility, survival, and proliferation. FAK has kinase‐dependent and kinase‐independent functions, both of which play major roles in embryogenesis and tumor invasiveness. The precise mechanisms of FAK activation are not known. Using x‐ray crystallography, small angle x‐ray scattering, and biochemical and functional analyses, we show that the key step for activation of FAK's kinase‐dependent functions—autophosphorylation of tyrosine‐397—requires site‐specific dimerization of FAK. The dimers form via the association of the N‐terminal FERM domain of FAK and are stabilized by an interaction between FERM and the C‐terminal FAT domain. FAT binds to a basic motif on FERM that regulates co‐activation and nuclear localization. FAK dimerization requires local enrichment, which occurs specifically at focal adhesions. Paxillin plays a dual role, by recruiting FAK to focal adhesions and by reinforcing the FAT:FERM interaction. Our results provide a structural and mechanistic framework to explain how FAK combines multiple stimuli into a site‐specific function. The dimer interfaces we describe are promising targets for blocking FAK activation.  相似文献   

2.
Alix (ALG-2-interacting protein X), a cytoplasmic adaptor protein involved in endosomal sorting and actin cytoskeleton assembly, is required for the maintenance of fibroblast morphology. As Alix has sequence similarity to adhesin in Entamoeba histolytica, and we observed that Alix is secreted, we determined whether extracellular Alix affects fibroblast morphology. Here, we demonstrate that secreted Alix is deposited on the substratum of non-immortalized WI38 fibroblasts. Antibody binding to extracellular Alix retards WI38 cell adhesion and spreading on fibronectin and vitronectin. Alix knockdown in WI38 cells reduces spreading and fibronectin assembly, and the effect is partially complemented by coating recombinant Alix on the cell substratum. Immortalized NIH/3T3 fibroblasts deposit less Alix on the substratum and have defects in α5β1-integrin functions. Coating recombinant Alix on the culture substratum for NIH/3T3 cells promotes α5β1-integrin-mediated cell adhesions and fibronectin assembly, and these effects require the aa 605–709 region of Alix. These findings demonstrate that a sub-population of Alix localizes extracellularly and regulates integrin-mediated cell adhesions and fibronectin matrix assembly.  相似文献   

3.
Focal adhesions (FAs) are integrin‐containing protein complexes regulated by a network of hundreds of protein–protein interactions. They are formed in a spatiotemporal manner upon the activation of integrin transmembrane receptors, which is crucial to trigger cell adhesion and many other cellular processes including cell migration, spreading and proliferation. Despite decades of studies, a detailed molecular level understanding on how FAs are organized and function is lacking due to their highly complex and dynamic nature. However, advances have been made on studying key integrin activators, talin and kindlin, and their associated proteins, which are major components of nascent FAs critical for initiating the assembly of mature FAs. This review will discuss the structural and functional findings of talin and kindlin and their immediate interaction network, which will shed light upon the architecture of nascent FAs and how they act as seeds for FA assembly to dynamically regulate diverse adhesion‐dependent physiological and pathological responses.  相似文献   

4.
Osteoclasts are bone‐resorbing cells formed by fusion of mononuclear precursors. The matrix proteins, fibronectin (FN), vitronectin (VN), and osteopontin (OPN) are implicated in joint destruction and interact with osteoclasts mainly through integrins. To assess the effects of these matrix proteins on osteoclast formation and activity, we used RAW 264.7 (RAW) cells and mouse splenocytes differentiated into osteoclasts on tissue culture polystyrene (TCP) or osteologic? slides pre‐coated with 0.01–20 µg/ml FN, VN, and OPN. At 96 h, osteoclast number and multinucleation were decreased on VN and FN compared to OPN and TCP in both RAW and splenocytes cell cultures. When early differentiation was assessed, VN but not FN decreased cytoplasmic tartrate‐resistant acid phosphatase activity and pre‐osteoclast number at 48 h. OPN had the opposite effect to FN on osteoclast formation. When RAW cells were differentiated on OPN and treated by FN and OPN, osteoclast number only in the FN treated group was 40–60% lower than the control, while the total number of nuclei was unchanged, suggesting that FN delays osteoclast fusion. In contrast to its inhibitory effect on osteoclastogenesis, FN increased resorption by increasing both osteoclast activity and the percentage of resorbing osteoclasts. This was accompanied by an increase in nitric oxide (NO) levels and interleukin‐1β (IL‐1β). IL‐1β production was inhibited using the NO‐synthase inhibitor only on FN indicating a FN‐specific cross‐talk between NO and IL‐1β signaling pathways. We conclude that FN upregulates osteoclast activity despite inhibiting osteoclast formation and that these effects involve NO and IL‐1β signaling. J. Cell. Biochem. 111: 1020–1034, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Focal adhesions (FAs) are large, integrin-containing, multi-protein assemblies spanning the plasma membrane that link the cellular cytoskeleton to surrounding extracellular matrix. They play critical roles in adhesion and cell signaling and are major regulators of epithelial homeostasis, tissue response to injury, and tumorigenesis. Most integrin subunits and their associated FA proteins are expressed in skin, and murine genetic models have provided insight into the functional roles of FAs in normal and neoplastic epidermis. Here, we discuss the roles of these proteins in normal epidermal proliferation, adhesion, wound healing, and cancer. While many downstream signaling mechanisms remain unclear, the critically important roles of FAs are highlighted by the development of therapeutics targeting FAs for human cancer.  相似文献   

6.
Focal adhesion kinase (FAK) is a structurally unique nonreceptor protein-tyrosine kinase that localizes to focal adhesion plaques. Regulation of its activity has been implicated in diverse signaling pathways, including those mediated by extracellular matrix/integrin interactions, G-protein coupled receptors for mitogenic neuropeptides, and certain oncogene products. To gain evidence for specific processes in which FAK may be involved in vivo, a study was initiated to determine its expression pattern during mouse development. FAK expression was detected in early embryos and appeared to be distributed throughout all cell types at about the time of neurulation. Subsequent to neural tube closure, expression became particularly abundant in the developing vasculature. This included expression in the medial layer of arteries populated by smooth muscle cells. In vitro studies using cultured rat aortic vascular smooth muscle cells demonstrate that FAK phosphotyrosine content is dramatically elevated in response to plating cells onto the adhesive glycoprotein, fibronectin. Also, enhanced tyrosine phosphorylation of FAK is observed in these cells upon stimulation with the vasoconstrictor angiotensin II. Thus, in vascular smooth muscle cells, like fibroblasts, FAK appears to play a role in signaling mechanisms induced by extracellular matrix components as well as G-protein coupled receptor agonists. The combined results of this study suggest that signaling through FAK may play an important role in blood vessel morphogenesis and function. © 1994 Wiley-Liss, Inc.  相似文献   

7.
《Developmental cell》2020,52(5):631-646.e4
  1. Download : Download high-res image (220KB)
  2. Download : Download full-size image
  相似文献   

8.
Extracellular matrix (ECM) stiffness regulates cell differentiation, survival, and migration. Our previous study has shown that the interaction of the focal adhesion protein vinculin with vinexin α plays a critical role in sensing ECM stiffness and regulating stiffness-dependent cell migration. However, the mechanism how vinculin–vinexin α interaction affects stiffness-dependent cell migration is unclear. Lipid rafts are membrane microdomains that are known to affect ECM-induced signals and cell behaviors. Here, we show that vinculin and vinexin α can localize to lipid rafts. Cell-ECM adhesion, intracellular tension, and a rigid ECM promote vinculin distribution to lipid rafts. The disruption of lipid rafts with Methyl-β-cyclodextrin impaired the ECM stiffness-mediated regulation of vinculin behavior and rapid cell migration on rigid ECM. These results indicate that lipid rafts play an important role in ECM-stiffness regulation of cell migration via vinculin.  相似文献   

9.
10.
The dynamic interactions between leukocyte integrin receptors and ligands in the vascular endothelium, extracellular matrix, or invading pathogens result in leukocyte adhesion, extravasation, and phagocytosis. This work examined the mechanical strength of the connection between iC3b, a complement component that stimulates phagocytosis, and the ligand‐binding domain, the I‐domain, of integrin αMβ2. Single‐molecule force measurements of αM I‐domain–iC3b complexes were conducted by atomic force microscope. Strikingly, depending on loading rates, immobilization of the I‐domain via its C‐terminus resulted in a 1.3‐fold to 1.5‐fold increase in unbinding force compared with I‐domains immobilized via the N‐terminus. The force spectra (unbinding force versus loading rate) of the I‐domain–iC3b complexes revealed that the enhanced mechanical strength is due to a 2.4‐fold increase in the lifetime of the I‐domain–iC3b bond. Given the structural and functional similarity of all integrin I‐domains, our result supports the existing allosteric regulatory model by which the ligand binding strength of integrin can be increased rapidly when a force is allowed to stretch the C‐terminus of the I‐domain. This type of mechanism may account for the rapid ligand affinity adjustment during leukocyte migration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The physical mechanism by which cells transduce an applied electric field is not well understood. This article establishes for the first time a direct, quantitative model that links the field to cytoskeletal forces. In a previous article, applied electric fields of physiological strength were shown to produce significant mechanical torques at the cellular level. In this article, the corresponding forces exerted on the cytoskeleton are computed and found to be comparable in magnitude to mechanical forces known to produce physiological effects. In addition to the electrical force, the viscous drag force exerted by the surrounding medium and the restoring force exerted by the neighboring structures are considered in the analysis. For an applied electric field of 10 V/m, the force transmitted to the CD44 receptor of a hyaluronan chain in cartilage is about 1 pN at 10 Hz and 7 pN at 1 Hz. For an applied electric field of 100 V/m, the force transmitted to the cytoskeleton at one focus of the glycocalyx is about 0.5 pN at 10 Hz and 1.3 pN at 1 Hz. Mechanical forces of similar magnitude have been observed to produce physiological effects. Hence, this electromechanical transduction process is a plausible mechanism for the production of physiological effects by such electric fields. Bioelectromagnetics 31:77–84, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Fibronectin matrix assembly is a multistep, integrin-dependent process. To investigate the role of integrin dynamics in fibronectin fibrillogenesis, we developed an antibody-chasing technique for simultaneous tracking of two integrin populations by different antibodies. We established that whereas the vitronectin receptor alpha(v)beta(3) remains within focal contacts, the fibronectin receptor alpha(5)beta(1) translocates from focal contacts into and along extracellular matrix (ECM) contacts. This escalator-like translocation occurs relative to the focal contacts at 6.5 +/- 0.7 microm/h and is independent of cell migration. It is induced by ligation of alpha(5)beta(1) integrins and depends on interactions with a functional actin cytoskeleton and vitronectin receptor ligation. During cell spreading, translocation of ligand-occupied alpha(5)beta(1) integrins away from focal contacts and along bundles of actin filaments generates ECM contacts. Tensin is a primary cytoskeletal component of these ECM contacts, and a novel dominant-negative inhibitor of tensin blocked ECM contact formation, integrin translocation, and fibronectin fibrillogenesis without affecting focal contacts. We propose that translocating alpha(5)beta(1) integrins induce initial fibronectin fibrillogenesis by transmitting cytoskeleton-generated tension to extracellular fibronectin molecules. Blocking this integrin translocation by a variety of treatments prevents the formation of ECM contacts and fibronectin fibrillogenesis. These studies identify a localized, directional, integrin translocation mechanism for matrix assembly.  相似文献   

13.
14.
刘畅  赵锋  李庆章 《生物学杂志》2012,29(1):75-78,70
整合素是一种跨膜蛋白,属于黏附分子家族.其主要功能是参与细胞和细胞、细胞和细胞外基质(ECM)的黏附和信号转导.整合素是含有α和β两条肽链的异源二聚体,来源不同的α、β亚基所形成的整合素具有不同的ECM结合能力.阐述了整合素的结构、生物学功能以及生理、病理学意义,并概述了其研究进展.  相似文献   

15.
We have analyzed the effects of latent TGF-beta binding protein 2 (LTBP-2) and its fragments on lung fibroblast adhesion. Quantitative cell adhesion assays indicated that fibroblasts do not adhere to full-length LTBP-2. Interestingly, LTBP-2 had dominant disrupting effects on the morphology of fibroblasts adhering to fibronectin (FN). Fibroblasts plated on LTBP-2 and FN substratum exhibited less adherent morphology and displayed clearly decreased actin stress fibers than cells plated on FN. These cells formed, instead, extensive membrane ruffles. LTBP-2 had no effects on cells adhering to collagen type I. Fibroblasts adhered weakly to the NH2-terminal fragment of LTBP-2. Unlike FN, this fragment did not augment actin stress fiber formation. Interestingly, the adhesion-mediating and cytoskeleton-disrupting effects were localized to the same NH2-terminal proline-rich region of LTBP-2. LTBP-2 and its antiadhesive fragment bound to FN in vitro, and the antiadhesive fragment associated with the extracellular matrix FN fibrils. These observations reveal a potentially important role for LTBP-2 as an antiadhesive matrix component.  相似文献   

16.
17.
Actin–myosin contractility modulates focal adhesion assembly, stress fiber formation, and cell migration. We analyzed the contributions of contractility to fibroblast adhesion strengthening using a hydrodynamic adhesion assay and micropatterned substrates to control cell shape and adhesive area. Serum addition resulted in adhesion strengthening to levels 30–40% higher than serum‐free cultures. Inhibition of myosin light chain kinase or Rho‐kinase blocked phosphorylation of myosin light chain to similar extents and eliminated the serum‐induced enhancements in strengthening. Blebbistatin‐induced inhibition of myosin II reduced serum‐induced adhesion strength to similar levels as those obtained by blocking myosin light chain phosphorylation. Reductions in adhesion strengthening by inhibitors of contractility correlated with loss of vinculin and talin from focal adhesions without changes in integrin binding. In vinculin‐null cells, inhibition of contractility did not alter adhesive force, whereas controls displayed a 20% reduction in adhesion strength, indicating that the effects of contractility on adhesive force are vinculin‐dependent. Furthermore, in cells expressing FAK, inhibitors of contractility reduced serum‐induced adhesion strengthening as well as eliminated focal adhesion assembly. In contrast, in the absence of FAK, these inhibitors did not alter adhesion strength or focal adhesion assembly. These results indicate that contractility modulates adhesion strengthening via FAK‐dependent, vinculin‐containing focal adhesion assembly. J. Cell. Physiol. 223:746–756, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Larjava H  Plow EF  Wu C 《EMBO reports》2008,9(12):1203-1208
Integrin-mediated cell-ECM (extracellular matrix) adhesion is a fundamental process that controls cell behaviour. For correct cell-ECM adhesion, both the ligand-binding affinity and the spatial organization of integrins must be precisely controlled; how integrins are regulated, however, is not completely understood. Kindlins constitute a family of evolutionarily conserved cytoplasmic components of cell-ECM adhesions that bind to beta-integrin cytoplasmic tails directly and cooperate with talin in integrin activation. In addition, kindlins interact with many components of cell-ECM adhesions--such as migfilin and integrin-linked kinase--to promote cytoskeletal reorganization. Loss of kindlins causes severe defects in integrin signalling, cell-ECM adhesion and cytoskeletal organization, resulting in early embryonic lethality (kindlin-2), postnatal lethality (kindlin-3) and Kindler syndrome (kindlin-1). It is therefore clear that kindlins, together with several other integrin-proximal proteins, are essential for integrin signalling and cell-ECM adhesion regulation.  相似文献   

19.
Integrin‐linked kinase (ILK) is an adaptor protein required to establish and maintain the connection between integrins and the actin cytoskeleton. This linkage is essential for generating force between the extracellular matrix (ECM) and the cell during migration and matrix remodelling. The mechanisms by which ILK stability and turnover are regulated are unknown. Here we report that the E3 ligase CHIP–heat shock protein 90 (Hsp90) axis regulates ILK turnover in fibroblasts. The chaperone Hsp90 stabilizes ILK and facilitates the interaction of ILK with α‐parvin. When Hsp90 activity is blocked, ILK is ubiquitinated by CHIP and degraded by the proteasome, resulting in impaired fibroblast migration and a dramatic reduction in the fibrotic response to bleomycin in mice. Together, our results uncover how Hsp90 regulates ILK stability and identify a potential therapeutic strategy to alleviate fibrotic diseases.  相似文献   

20.
Members of the integrin family of adhesion receptors mediate interactions of cells with the extracellular matrix. Besides their role in tissue morphogenesis by anchorage of cells to basement membranes and migration along extracellular matrix proteins, integrins are thought to play a key role in mediating the control of gene expression by the extracellular matrix. Studies over the past 10 years have shown that integrin-mediated cell adhesion can trigger signal transduction cascades involving translocation of proteins and protein tyrosine phosphorylation events. In this review, we discuss approaches used in our lab to study early events in integrin signalling as well as further downstream changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号