首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied home range and habitat selection of radio-marked adult California spotted owls (Strix occidentalis occidentalis) randomly selected from among the breeding population of owls in the central Sierra Nevada, California from June to October 2006. The most parsimonious home-range estimate for our data was 555 ha (SE = 100 ha). Home-range size was positively correlated with the number of vegetation patches in the home range (habitat heterogeneity). We used resource selection ratios to examine selection of vegetation types by owls within our study area. Owl home ranges contained a high proportion of mature conifer forest, relative to its availability, although the confidence interval for this estimate overlapped one. We also used resource selection functions (RSF) to examine owl foraging habitat selection. Relative probability of selection of foraging habitat was correlated with vegetation classes, patch size, and their interaction. Owls showed highest selection rates for large patches (>10 ha) of pole-sized coniferous forest. Our results suggested that spotted owls in the central Sierra Nevada used habitat that contained a high proportion of mature conifer forest at the home-range scale, but at a finer scale (foraging site selection) owls used other vegetation classes interspersed among mature forest patches, consistent with our hypothesis that spotted owls may use other forest types besides old growth and mature forests when foraging. Our study provides an unbiased estimate of habitat use by spotted owls in the central Sierra Nevada. Our results suggest that forest managers continue to protect remaining mature and old-growth forests in the central Sierra Nevada because owl home ranges contain high proportions of these habitats. However, our results also showed that owls used younger stands as foraging habitat so that landscape heterogeneity, with respect to cover types, may be an important consideration for management but we did not attempt to relate our findings to fitness of owls. Thus management for some level of landscape heterogeneity for the benefit of owls should proceed with caution or under an adaptive management framework. © 2011 The Wildlife Society.  相似文献   

2.
In many bird species, parents adjust their home‐ranges during chick‐rearing to the availability and distribution of food resources, balancing the benefits of energy intake against the costs of travelling. Over recent decades, European agricultural landscapes have changed radically, resulting in the degradation of habitats and reductions in food resources for farmland birds. Lower foraging success and longer foraging trip distances that result from these changes are often assumed to reduce the reproductive performance of parents, although the mechanisms are not well understood. We tested the behavioural response of chick‐rearing Little Owls Athene noctua to variation in habitat diversity in an agricultural landscape. We equipped females with GPS loggers and received adequate range‐use data for 19 individuals (6063–14 439 locations per bird). In habitats dominated by homogeneous cropland habitats, home‐ranges were over 12 ha in size, whereas in highly diverse habitats they were below 2 ha. Large home‐ranges were associated with increased flight activity (117% of that of birds in small home‐ranges) and distances travelled per night (152%), increased duration of foraging trips (169%) covering larger distances (246%), and reduced nest visiting rates (81%). The study therefore provides strong correlative evidence that Little Owls breeding in monotonous farmland habitats expend more time and energy for a lower benefit in terms of feeding rates than do birds in more heterogeneous landscapes. As nestling food supply is the main determinant of chick survival, these results suggest a strong impact of farmland characteristics on local demographic rates. We suggest that preserving and creating islands of high habitat diversity within uniform open agricultural landscapes should be a key target in the conservation of Little Owl populations.  相似文献   

3.
Bird conservation can be challenging in landscapes with high habitat turnover such as planted forests, especially for species that require large home ranges and juxtaposition of different habitats to complete their life cycle. The eurasian hoopoe (Upupa epops) has declined severely in western Europe but is still abundant in south-western France. We studied habitat selection of hoopoes in pine plantation forests using a multi-scale survey, including point-counts at the landscape level and radio-tracking at the home-range scale. We quantified habitat use by systematically observing bird behaviour and characterized foraging sites according to micro-habitat variables and abundance of the main prey in the study area, the pine processionary moth (Thaumetopoea pityocampa). At the landscape scale, hoopoes selected habitat mosaics of high diversity, including deciduous woods and hedgerows as main nesting sites. At the home-range scale, hoopoes showed strong selection for short grassland vegetation along sand tracks as main foraging habitats. Vegetation was significantly shorter and sparser at foraging sites than random, and foraging intensity appeared to be significantly correlated with moth winter nest abundance. Hoopoe nesting success decreased during the three study years in line with processionary moth abundance. Thus, we suggest that hoopoes need complementation between foraging and breeding habitats to establish successfully in pine plantations. Hoopoe conservation requires the maintenance of adjacent breeding (deciduous woods) and foraging habitats (short swards adjacent to plantation edges), and consequently depends on the maintenance of habitat diversity at the landscape scale.  相似文献   

4.
Evaluating habitat suitability is often complex, as habitat effects may be scale‐dependent, critical resources may be spatially segregated, and resource availability may also depend on intra‐ and inter‐specific interactions. Using analyses that spanned multiple years and spatial scales, we investigated habitat requirements of a territorial generalist, the common raven Corvus corax, in a relatively pristine woodland, Bia?owie?a Forest (E Poland). We compiled data from multiple raven surveys conducted between 1985 and 2001. Ravens were regularly distributed over the entire study area but declined in density over 50% within the 16 yr interval. In the same period game and forest management significantly reduced ungulate densities and likely diminished the habitat quality with regard to food supply, especially carrion. To better understand habitat requirements of ravens we studied breeding performance in relation to three different habitat types across multiple scales: open areas, coniferous‐dominated forest, and deciduous‐dominated forest. We found a prominent dissimilarity between raven nesting and foraging habitats highlighting the importance of resource complementation for ravens. On a fine scale, large old pines were exclusively selected as nesting trees and nesting areas were generally coniferous‐dominated. However, at increasingly broader scales, coniferous habitats were negatively associated with raven reproductive success as those habitats likely provide a lower food supply. Only where the coniferous nesting areas at smaller scales were complemented with high percentages of deciduous forests and open areas at broader scales did the breeding performance increase. In addition to habitat composition, intra‐specific interactions were important determinants of reproductive performance and very successful neighbors decreased reproductive performance of a focal pair. Most of previous studies have investigated resource complementation in terms of habitat edges or proximity of complementing resource patches. Our study demonstrates that the concept of landscape complementation also applies to gradients in landscape composition and emphasizes the importance of scales and intraspecific interactions in habitat analyses.  相似文献   

5.
Both local and landscape-scale habitat variables influence the abundance of wetland breeding birds. Few studies, however, simultaneously assess the effects of habitat variables at multiple spatial scales or consider effects on reproductive success. Therefore, we examined the effects of wetland and landscape-scale habitat variables on the abundance of nine breeding bird species and the effects of nest, wetland, or landscape-scale habitat variables on the nest success, clutch size, or number of fledglings of four species at 15 cattail (Typha sp.)-dominated wetlands in an agricultural region around Peterborough, Ontario, Canada. The abundance of Least Bittern (Ixobrychus exilis), Common Moorhen (Gallinula chloropus), and Marsh Wren (Cistothorus palustris) increased as wetland water depth increased; the abundance of Common Moorhen and Marsh Wren increased as wetland size increased; and the abundance of Marsh Wren increased as the amount of wetland in the surrounding landscape increased. Red-winged Blackbird (Agelaius phoeniceus) nest success decreased as nest cover increased. Clutch sizes were uninfluenced by the habitat variables that we considered. The number of Red-winged Blackbird fledglings per successful nest increased as wetland size increased and as the amount of wetland in the surrounding landscape increased. We speculate that food limitation in small wetlands may be responsible for the pattern in Red-winged Blackbird fledging success. The abundance and nest success of Virginia Rail (Rallus limicola) and Sora (Porzana carolina) were uninfluenced by the habitat variables we considered. Future research should consider mate attraction and productivity in relation to local and landscape-scale habitat variables for these and other secretive species. Our study suggests that wetland conservation will be most effective if it considers habitat variables at multiple spatial scales.  相似文献   

6.
Food availability is an important factor affecting breeding success in birds. Food supplementation experiments in birds have in general focused on the effects on reproductive success in terms of female investment (laying date, clutch size, egg size), however, it is also known that the estimation of mate quality based on sexually selected signals influences female reproductive investment. In the particular case of magpies, females use nest size, a post-mating sexually selected signal, to assess male's likelihood to invest in reproduction, and accordingly adjust reproductive investment (clutch size). Then, the possible effects of food supplementation on female reproductive investment could be mediated by other variables related to parental quality, such as nest size in magpies. In the present study, we explore if higher food availability in a magpie territory affected both male sexually selected traits (i.e. nest size) and female reproductive investment (laying date, egg size, clutch size). We performed a food supplementation experiment in which we experimentally increased food availability in several magpie territories, keeping others as controls. In food-supplemented territories, males built significantly larger nests and females significantly increased egg size by 4.1% compared to control females. Results suggest that the continuous provisioning of protein rich food allowed magpie females to increase egg size. However, laying date and clutch size did not differ between control and food-supplemented magpie pairs. Food availability also affected the relationship between female reproductive investment and nest size. In control territories, females decreased their egg size in response to a larger nest, whereas a tendency for the opposite relationship was revealed in food-supplemented territories. We discuss the possibility that magpie females adopt different strategies for reproductive investment according to food availability.  相似文献   

7.
Conspecific nesting density affects many aspects of breeding biology, as well as habitat selection decisions. However, the large variations in breeding density observed in many species are yet to be fully explained. Here, we investigated the settlement patterns in a colonial species with variable breeding density and where resource distribution could be manipulated. The zebra finch, Taeniopygia guttata, is a classic avian model in evolutionary biology but we know surprisingly very little about nest site selection strategies and nesting densities in this species, and in fact, in nomadic species in general. Yet, important determinants of habitat selection strategies, including temporal predictability and breeding synchrony, are likely to be different in nomadic species than in the non‐nomadic species studied to date. Here, we manipulated the distribution of nesting sites (by providing nest boxes) and food patches (feeders) to test four non‐exclusive habitat selection hypotheses that could lead to nest aggregation: 1) attraction to resources, 2) attraction to breeding conspecifics, and 3) attraction to successful conspecifics and 4) use of private information (i.e. own reproductive success on a site). We found that wild zebra finches used conspecific presence and possibly reproductive success, to make decisions over where to locate their nests, but did not aggregate around water or food within the study areas. Moreover, there was a high degree of inter‐individual variation in nesting density preference. We discuss the significance of our results for habitat selection strategy in nomadic species and with respect to the differential selection pressures that individuals breeding at different densities may experience.  相似文献   

8.
In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio) that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments.  相似文献   

9.
The debate whether single large or several small (SLOSS) patches benefit biodiversity has existed for decades, but recent literature provides increasing evidence for the importance of small habitats. Possible beneficial mechanisms include reduced presence of predators and competitors in small habitat areas or specific functions such as stepping stones for dispersal. Given the increasing amount of studies highlighting individual behavioral differences that may influence these functions, we hypothesize that the advantage of small versus large habitat patches not only depends on patch functionality but also on the presence of animal personalities (i.e., risk-tolerant vs. risk-averse). Using an individual-based, spatially-explicit community model, we analyzed the diversity of mammal communities in landscapes consisting of a few large habitat islands interspersed with different amounts and sizes of small habitat patches. Within these heterogeneous environments, individuals compete for resources and form home-ranges, with only risk-tolerant individuals using habitat edges. Results show that when risk-tolerant individuals exist, small patches increase species diversity. A strong peak occurs at approximately 20% habitat cover in small patches when those small habitats are only used for foraging but not for breeding and home-range core position. Additional usage as stepping stones for juvenile dispersal further increases species persistence. Overall, our results reveal that a combination of a few large and several small habitat patches promotes biodiversity by enhancing landscape heterogeneity. Here, heterogeneity is created by pronounced differences in habitat functionality, increasing edge density, and variability in habitat use by different behavioral types. The finding that a combination of single large AND several small (SLASS) patches is needed for effective biodiversity preservation has implications for advancing landscape conservation. Particularly in structurally poor agricultural areas, modern technology enables precise management with the opportunity to create small foraging habitats by excluding less profitable agricultural land from cultivation.  相似文献   

10.
The negative effect of agricultural intensification on bumblebee populations is thought to partly be caused by loss of food plants, for example because of increased field size and concomitant loss of non-crop field borders and their nectar and pollen plants. Earlier studies have focused on how loss of foraging resources affects colony growth and thereby abundance of workers and sexual reproduction. By comparing bumblebees in agricultural landscapes of different complexity in Southern Sweden, we here demonstrate that also the adult size of bumblebee foragers is significantly related to the availability of foraging resources. This effect was independent of both species identity and foraging habitat type. This suggests a shortage of flower resources in landscapes of lower complexity, which may also affect the reproductive success of colonies negatively.  相似文献   

11.
The ideal free distribution (IFD) predicts that organisms will disperse to sites that maximize their fitness based on availability of resources. Habitat heterogeneity underlies resource variation and influences spatial variation in demography and the distribution of populations. We relate nest site productivity at multiple scales measured over a decade to habitat quality in a box-nesting population of Forpus passerinus (green-rumped parrotlets) in Venezuela to examine critical IFD assumptions. Variation in reproductive success at the local population and neighborhood scales had a much larger influence on productivity (fledglings per nest box per year) than nest site or female identity. Habitat features were reliable cues of nest site quality. Nest sites with less vegetative cover produced greater numbers of fledglings than sites with more cover. However, there was also a competitive cost to nesting in high-quality, low-vegetative cover nest boxes, as these sites experienced the most infanticide events. In the lowland local population, water depth and cover surrounding nest sites were related with F. passerinus productivity. Low vegetative cover and deeper water were associated with lower predation rates, suggesting that predation could be a primary factor driving habitat selection patterns. Parrotlets also demonstrated directional dispersal. Pairs that changed nest sites were more likely to disperse from poor-quality nest sites to high-quality nest sites rather than vice versa, and juveniles were more likely to disperse to, or remain in, the more productive of the two local populations. Parrotlets exhibited three characteristics fundamental to the IFD: habitat heterogeneity within and between local populations, reliable habitat cues to productivity, and active dispersal to sites of higher fitness.  相似文献   

12.
Range-wide declines in northern bobwhite populations (Colinus virginianus) have been attributed to concomitant loss of breeding habitat. Bobwhite management efforts to restore this habitat resource can be informed by empirical studies of associations between breeding success and multi-scale habitat attributes. We compared bobwhite nest success in 2 southern Iowa landscapes as a function of microhabitat and landscape composition. Lake Sugema Fish and Wildlife Area (LSWA) was managed to promote bobwhite recruitment, and Harrisburg Township (HT) was an adjacent landscape dominated by private agricultural production. Survival rate modeling based on telemetry data provided evidence for age-specific daily nest survival rate. Daily survival rates decreased as nest age increased, but the decline was more severe at HT. Nest survival at LSWA (S = 0.495, SE = 0.103) was nearly twice that on HT (S = 0.277, SE = 0.072). We found no evidence that habitat composition or spatial attributes within 210 m of a nest site significantly influenced nest success. Forb canopy at the nest site had a positive influence on nest success at HT but not at LSWA. We suggest nesting habitat with greater forb canopy cover will increase the opportunity for nesting success in landscapes with limited nesting habitat. © 2010 The Wildlife Society.  相似文献   

13.
Abstract: Wildlife researchers often test whether animals use resources disproportionately relative to availability (i.e., selectively). However, the traditional estimate of availability at the landscape scale (resource proportions on the landscape) may be inaccurate and lead to false conclusions. We calculated the chance of falsely finding selection (type I error rate) when the traditional estimate of availability is used. True availability was estimated by Monte Carlo simulations with randomly located home ranges and compared to the traditional estimate to calculate type I error rates. Tests were conducted with α = 0.05 for different home-range sizes (1 to 1,000 km2) and 4 habitat patterns. Landscape proportions did not equal proportions of habitats in random home ranges (traditional estimate ≠ true availability). Type I error rates were ≥0.24 and increased with number of animals tested and decreased with home-range size and number of habitats. Therefore, researchers should use randomly located home ranges instead of landscape proportions to estimate availability at the landscape scale. We evaluated a goodness-of-fit test for comparing habitat proportions between randomly located home ranges and observed home ranges. Type I error rates for this method were ≤0.08, regardless of number of animals, home-range size, and number of habitats tested. We evaluated this method for 2 species with different home-range sizes and predicted habitat selection patterns: mountain lions (Puma concolor, ∼ 700 km2, relatively nonselective) and mule deer (Odocoileus hemionus, ∼ 16 km2, relatively selective). This method yielded results consistent with predictions, whereas the traditional method using landscape proportions to estimate availability did not. Randomly located, simulated home ranges are superior to landscape proportions for estimating availability.  相似文献   

14.
Habitat use by seed-eating birds: a scale-dependent approach   总被引:2,自引:0,他引:2  
The seedbank in arable farmland represents an important foraging resource for birds, particularly in grassland landscapes where alternative foraging opportunities may be scarce. We used a stepwise approach to examine the importance of seed food resources for farmland birds in winter. First, results from a large-scale experiment in which seed resources were manipulated to test the notion that birds aggregate at food resources, subject to a minimum threshold level. Secondly, a multiscale approach was used to characterize habitat use at a landscape scale and how this may inform agri-environment implementation. Overall seed resources declined sharply over the winter and were relatively low in most arable fields. Large-scale declines in the arable seedbank mean that much habitat may not be of sufficient quality to support foraging bird populations through a winter. At a landscape scale, extensive analyses of breeding season abundance show that bird abundance is most influenced by arable (i.e. seed-rich) habitat in grassland landscapes. The scale at which birds respond to habitat differs between species, and is related to the extent of between-season movements. Implementation of agri-environment schemes will need to consider both the quality of habitat and the context in which it is provided if recent declines in farmland bird populations are to be reversed.  相似文献   

15.
Low-level radioactive contamination may affect choice of breeding site and life-history decisions if (i) radioactivity directly affects body condition or (ii) it affects resource abundance that then secondarily influences reproductive decisions. We tested the effects of radioactive contamination on nest-site choice and reproduction in a community of hole nesting birds by putting up nest boxes in areas differing in levels of background radiation. Great tit Parus major and pied flycatcher Ficedula hypoleuca significantly avoided nest boxes in heavily contaminated areas, with a stronger effect in flycatchers than in tits. These preferences could not be attributed to variation in habitat quality or resource abundance, as determined by analyses of habitat use and the relationship between radiation and life-history characters. Likewise, none of these effects could be attributed to individuals of a specific age breeding in the most contaminated areas. Laying date and clutch size were not significantly related to dose rate in either species. Hatching success was depressed by elevated radioactive contamination, interacting with habitat in the great tit and with laying date in the pied flycatcher. Interspecific differences in effects of radiation on nest-site choice suggest that species respond in a species-specific manner to radiation, perhaps related to differences in migratory habits. We suggest that individual body condition rather than secondary effects of radiation on resource abundance account for the effects on nest box use and hatching success.  相似文献   

16.
Environmental factors can shape reproductive investment strategies and influence the variance in male mating success. Environmental effects on extrapair paternity have traditionally been ascribed to aspects of the social environment, such as breeding density and synchrony. However, social factors are often confounded with habitat quality and are challenging to disentangle. We used both natural variation in habitat quality and a food supplementation experiment to separate the effects of food availability—one key aspect of habitat quality—on extrapair paternity (EPP) and reproductive success in the black-throated blue warbler, Setophaga caerulescens. High natural food availability was associated with higher within-pair paternity (WPP) and fledging two broods late in the breeding season, but lower EPP. Food-supplemented males had higher WPP leading to higher reproductive success relative to controls, and when in low-quality habitat, food-supplemented males were more likely to fledge two broods but less likely to gain EPP. Our results demonstrate that food availability affects trade-offs in reproductive activities. When food constraints are reduced, males invest in WPP at the expense of EPP. These findings imply that environmental change could alter how individuals allocate their resources and affect the selective environment that drives variation in male mating success.  相似文献   

17.
The leaf litter of tropical wet forests is replete with itinerant ant nests. Nest movement may help ants evade the constraints of stress and disturbance and increase access to resources. I studied how nest relocation and environmental factors may explain the density, size, and growth of leaf litter ant nests. I decoupled the relationships among litter depth, food abundance, and nest availability in a 4‐mo manipulation of food and leaf litter in a community of litter‐nesting ants in a lowland wet forest in Costa Rica. Over 4 mo, 290 1 m2 treatment and control plots were sampled without replacement. Nest densities doubled in response to food supplementation, but did not decrease in response to litter removal or stress (from litter trampling). The supplementation of food increased the utilization of less favored nesting materials. In response to food supplementation and litter trampling, arboreal ants established nests in the litter, and growth rates of the most common ants (Pheidole spp.) increased. Colony growth was independent of colony size and growth rates of the most abundant ants. In general, I conclude that litter‐nesting ant density is driven primarily by food limitation, that nest relocation behavior significantly affects access to resource and the demographic structure of this community, and that nest fission may be a method to break the growth–reproduction trade‐off.  相似文献   

18.
Density‐dependent effects on reproduction can arise through variation in habitat quality or increased competition and interference among neighbours. Negative effects have been found in avian populations and these have been mainly attributed to food limitations. In this study, we investigated whether density‐dependent effects could result from either heterogeneity in habitat suitability, interference among neighbours, or predation. To test these hypotheses, we collected data over eight years in a growing population of temperate‐nesting Canada geese Branta canadensis maxima. We compared different parameters of nesting success of geese between two sites characterized by different nest densities and looked at the effects of nest proximity on these parameters within each site. At the landscape level, we found density‐dependent effects due to variation in habitat quality associated with predation probabilities and flooding events. At a finer scale, nesting success declined with proximity to neighbours, probably due to increased aggressive interactions among pairs. However, complete clutch predation showed both positive and negative density‐dependence, due to differences in predator community at each site. We concluded that density‐dependent effects reduced nesting success of Canada geese through both heterogeneity in habitat safety and agonistic interference between neighbours but that density‐dependent effects could also be positive in some instances.  相似文献   

19.
Factors affecting activity, habitat use, and home-range size of the red fox were analysed in a highly heterogeneous rural environment. Individual differences in behaviour were used to test our hypotheses. Food habits tended to depend on food availability, which, in turn, was mainly influenced by temperature. Diet was highly heterogeneous. Insects, e.g. grasshoppers and beetles, and cultivated fruits were the staple of the diet, but no diet component stood out clearly from all others. For an opportunistic species such as the fox, habitat heterogeneity may be the main factor underlying a wide trophic niche. All foxes selected the vineyard as part of their home ranges, whereas they preferred for activity the abandoned olive-yard among the habitats of their home ranges. Human intolerance of foxes affects their pattern of activity, habitat selection, and ranging behaviour. Foxes were strongly nocturnal. Cover-rich habitats were preferred for resting and for movements in daylight. Areas under human management were mainly used at night. Selectivity was higher for resting than for activity sites. Variation in home-range size and shape can be influenced not only by the dispersion of the main food patches, but also by the location of shelters  相似文献   

20.
Density is known to be an important factor in population size regulation. Several mechanisms of density limitation have been identified in colonial birds. We studied competition in Common Terns Sterna hirundo to assess whether the factor limiting reproductive output was competition for nest‐sites, which is dependent on local nest density, or density‐dependent competition for food resources, which is dependent on overall colony size using the same foraging area. We found strong associations of both colony size and nest density with reproductive output in five colonies of Common Terns in three different habitats (one marine, two freshwater). Based on detailed long‐term datasets of six separate sub‐colonies of the Banter See colony that differed in nest density, we found that reproductive success was not related to nest density but to overall colony size, possibly a result of resource depletion and food competition. We also found carry‐over effects of colony size during rearing on post‐fledging return rate. These results have important implications for the conservation management plans aimed at recovering declining populations of Common Terns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号