首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the bacterium Escherichia coli, the essential inner membrane protein (IMP) YidC assists in the biogenesis of IMPs and IMP complexes. Our current ideas about the function of YidC are based on targeted approaches using only a handful of model IMPs. Proteome-wide approaches are required to further our understanding of the significance of YidC and to find new YidC substrates. Here, using two-dimensional blue native/SDS-PAGE methodology that is suitable for comparative analysis, we have characterized the consequences of YidC depletion for the steady-state levels and oligomeric state of the constituents of the inner membrane proteome. Our analysis showed that (i) YidC depletion reduces the levels of a variety of complexes without changing their composition, (ii) the levels of IMPs containing only soluble domains smaller than 100 amino acids are likely to be reduced upon YidC depletion, whereas the levels of IMPs with at least one soluble domain larger than 100 amino acids do not, and (iii) the levels of a number of proteins with established or putative chaperone activity (HflC, HflK, PpiD, OppA, GroEL and DnaK) are strongly increased in the inner membrane fraction upon YidC depletion. In the absence of YidC, these proteins may assist the folding of sizeable soluble domains of IMPs, thereby supporting their folding and oligomeric assembly. In conclusion, our analysis identifies many new IMPs/IMP complexes that depend on YidC for their biogenesis, responses that accompany depletion of YidC and an IMP characteristic that is associated with YidC dependence.  相似文献   

2.
The YidC/OxaI/Alb3 family of membrane proteins is involved in the biogenesis of integral membrane proteins in bacteria, mitochondria, and chloroplasts. Gram-positive bacteria often contain multiple YidC paralogs that can be subdivided into two major classes, namely, YidC1 and YidC2. The Streptococcus mutans YidC1 and YidC2 proteins possess C-terminal tails that differ in charges (+9 and + 14) and lengths (33 and 61 amino acids). The longer YidC2 C terminus bears a resemblance to the C-terminal ribosome-binding domain of the mitochondrial OxaI protein and, in contrast to the shorter YidC1 C terminus, can mediate the interaction with mitochondrial ribosomes. These observations have led to the suggestion that YidC1 and YidC2 differ in their abilities to interact with ribosomes. However, the interaction with bacterial translating ribosomes has never been addressed. Here we demonstrate that Escherichia coli ribosomes are able to interact with both YidC1 and YidC2. The interaction is stimulated by the presence of a nascent membrane protein substrate and abolished upon deletion of the C-terminal tail, which also abrogates the YidC-dependent membrane insertion of subunit c of the F1F0-ATPase into the membrane. It is concluded that both YidC1 and YidC2 interact with ribosomes, suggesting that the modes of membrane insertion by these membrane insertases are similar.  相似文献   

3.
The marine Gram‐negative bacteria Rhodopirellula baltica and Oceanicaulis alexandrii have, in contrast to Escherichia coli, membrane insertases with extended positively charged C‐terminal regions similar to the YidC homologues in mitochondria and Gram‐positive bacteria. We have found that chimeric forms of E. coli YidC fused to the C‐terminal YidC regions from the marine bacteria mediate binding of YidC to ribosomes and therefore may have a functional role for targeting a nascent protein to the membrane. Here, we show in E. coli that an extended C‐terminal region of YidC can compensate for a loss of SRP‐receptor function in vivo. Furthermore, the enhanced affinity of the ribosome to the chimeric YidC allows the isolation of a ribosome nascent chain complex together with the C‐terminally elongated YidC chimera. This complex was visualized at 8.6 Å by cryo‐electron microscopy and shows a close contact of the ribosome and a YidC monomer.  相似文献   

4.
To understand how YidC and SecYEG function together in membrane protein topogenesis, insertion and folding of the lactose permease of Escherichia coli (LacY), a 12-transmembrane helix protein LacY that catalyzes symport of a galactoside and an H+, was studied. Although both the SecYEG machinery and signal recognition particle are required for insertion of LacY into the membrane, YidC is not required for translocation of the six periplasmic loops in LacY. Rather, YidC acts as a chaperone, facilitating LacY folding. Upon YidC depletion, the conformation of LacY is perturbed, as judged by monoclonal antibody binding studies and by in vivo cross-linking between introduced Cys pairs. Disulfide cross-linking also demonstrates that YidC interacts with multiple transmembrane segments of LacY during membrane biogenesis. Moreover, YidC is strictly required for insertion of M13 procoat protein fused into the middle cytoplasmic loop of LacY. In contrast, the loops preceding and following the inserted procoat domain are dependent on SecYEG for insertion. These studies demonstrate close cooperation between the two complexes in membrane biogenesis and that YidC functions primarily as a foldase for LacY.  相似文献   

5.
Little is known about the quality control of proteins upon integration in the inner membrane of Escherichia coli. Here, we demonstrate that YidC and FtsH are adjacent to a nascent, truncated membrane protein using in vitro photo cross-linking. YidC plays a critical but poorly understood role in the biogenesis of E. coli inner membrane proteins (IMPs). FtsH functions as a membrane chaperone and protease. Furthermore, we show that FtsH and its modulator proteins HflK and HflC copurify with tagged YidC and, vice versa, that YidC copurifies with tagged FtsH. These results suggest that FtsH and YidC have a linked role in the quality control of IMPs.  相似文献   

6.
Proton-linked sugar transport systems in bacteria   总被引:12,自引:0,他引:12  
The cell membranes of various bacteria contain proton-linked transport systems ford-xylose,l-arabinose,d-galactose,d-glucose,l-rhamnose,l-fucose, lactose, and melibiose. The melibiose transporter ofE. coli is linked to both Na+ and H+ translocation. The substrate and inhibitor specificities of the monosaccharide transporters are described. By locating, cloning, and sequencing the genes encoding the sugar/H+ transporters inE. coli, the primary sequences of the transport proteins have been deduced. Those for xylose/H+, arabinose/H+, and galactose/H+ transport are homologous to each other. Furthermore, they are just as similar to the primary sequences of the following: glucose transport proteins found in a Cyanobacterium, yeast, alga, rat, mouse, and man; proteins for transport of galactose, lactose, or maltose in species of yeast; and to a developmentally regulated protein of Leishmania for which a function is not yet established. Some of these proteins catalyze facilitated diffusion of the sugar without cation transport. From the alignments of the homologous amino acid sequences, predictions of common structural features can be made: there are likely to be twelve membrane-spanning -helices, possibly in two groups of six, there is a central hydrophilic region, probably comprised largely of -helix; the highly conserved amino acid residues (40–50 out of 472–522 total) form discrete patterns or motifs throughout the proteins that are presumably critical for substrate recognition and the molecular mechanism of transport. Some of these features are found also in other transport proteins for citrate, tetracycline, lactose, or melibiose, the primary sequences of which are not similar to each other or to the homologous series of transporters. The glucose/Na+ transporter of rabbit and man is different in primary sequence to all the other sugar transporters characterized, but it is homologous to the proline/Na+ transporter ofE. coli, and there is evidence for its structural similarity to glucose/H+ transporters in Plants.In vivo andin vitro mutagenesis of the lactose/H+ and melibiose/Na+ (H+) transporters ofE. coli has identified individual amino acid residues alterations of which affect sugar and/or cation recognition and parameters of transport. Most of the bacterial transport proteins have been identified and the lactose/H+ transporter has been purified. The directions of future investigations are discussed.  相似文献   

7.
Oxa1 serves as a protein insertase of the mitochondrial inner membrane that is evolutionary related to the bacterial YidC insertase. Its activity is critical for membrane integration of mitochondrial translation products and conservatively sorted inner membrane proteins after their passage through the matrix. All Oxa1 substrates identified thus far have bacterial homologs and are of endosymbiotic origin. Here, we show that Oxa1 is critical for the biogenesis of members of the mitochondrial carrier proteins. Deletion mutants lacking Oxa1 show reduced steady‐state levels and activities of the mitochondrial ATP/ADP carrier protein Aac2. To reduce the risk of indirect effects, we generated a novel temperature-sensitive oxa1 mutant that allows rapid depletion of a mutated Oxa1 variant in situ by mitochondrial proteolysis. Oxa1-depleted mitochondria isolated from this mutant still contain normal levels of the membrane potential and of respiratory chain complexes. Nevertheless, in vitro import experiments showed severely reduced import rates of Aac2 and other members of the carrier family, whereas the import of matrix proteins was unaffected. From this, we conclude that Oxa1 is directly or indirectly required for efficient biogenesis of carrier proteins. This was unexpected, since carrier proteins are inserted into the inner membrane from the intermembrane space side and lack bacterial homologs. Our observations suggest that the function of Oxa1 is relevant not only for the biogenesis of conserved mitochondrial components such as respiratory chain complexes or ABC transporters but also for mitochondria-specific membrane proteins of eukaryotic origin.  相似文献   

8.
YidC of Escherichia coli belongs to the evolutionarily conserved Oxa1/Alb3/YidC family. Members of this family have all been implicated in membrane protein biogenesis of aerobic respiratory and energy-transducing proteins. YidC is essential for the insertion of subunit c of the F(1)F(0)-ATP synthase and subunit a of cytochrome o oxidase. The aim of this study was to investigate whether YidC plays a role during anaerobic growth of Escherichia coli, specifically when either nitrate or fumarate are used as terminal electron acceptors or under fermentative conditions. The effect of YidC depletion on the growth, enzyme activities, and protein levels in the inner membrane was determined. YidC is essential for all anaerobic growth conditions tested, and this is not because of the decreased levels of F(1)F(0)-ATP synthase in the inner membrane only. The results suggest a role for YidC in the membrane biogenesis of integral membrane parts of the anaerobic respiratory chain.  相似文献   

9.
10.
Members of the YidC/Oxa1/Alb3 protein family function in the biogenesis of membrane proteins in bacteria, mitochondria and chloroplasts. In Escherichia coli, YidC plays a key role in the integration and assembly of many inner membrane proteins. Interestingly, YidC functions both in concert with the Sec-translocon and as a separate insertase independent of the translocon. Mitochondria of higher eukaryotes contain two distant homologues of YidC: Oxa1 and Cox18/Oxa2. Oxa1 is required for the insertion of membrane proteins into the mitochondrial inner membrane. Cox18/Oxa2 plays a poorly defined role in the biogenesis of the cytochrome c oxidase complex. Employing a genetic complementation approach by expressing the conserved region of yeast Cox18 in E. coli, we show here that Cox18 is able to complement the essential Sec-independent function of YidC. This identifies Cox18 as a bona fide member of the YidC/Oxa1/Alb3 family.  相似文献   

11.
Recently, the structure of YidC2 from Bacillus halodurans revealed that the conserved positively charged residue within transmembrane segment one (at position 72) is located in a hydrophilic groove that is embedded in the inner leaflet of the lipid bilayer. The arginine residue was essential for the Bacillus subtilis SpoIIIJ (YidC1) to insert MifM and to complement a SpoIIIJ mutant strain. Here, we investigated the importance of the conserved positively charged residue for the function of the Escherichia coli YidC, Streptococcus mutans YidC2, and the chloroplast Arabidopsis thaliana Alb3. Like the Gram-positive B. subtilis SpoIIIJ, the conserved arginine was required for functioning of the Gram-positive S. mutans YidC2 and was necessary to complement the E. coli YidC depletion strain and to promote insertion of a YidC-dependent membrane protein synthesized with one but not two hydrophobic segments. In contrast, the conserved positively charged residue was not required for the E. coli YidC or the A. thaliana Alb3 to functionally complement the E. coli YidC depletion strain or to promote insertion of YidC-dependent membrane proteins. Our results also show that the C-terminal half of the helical hairpin structure in cytoplasmic loop C1 is important for the activity of YidC because various deletions in the region either eliminate or impair YidC function. The results here underscore the importance of the cytoplasmic hairpin region for YidC and show that the arginine is critical for the tested Gram-positive YidC homolog but is not essential for the tested Gram-negative and chloroplast YidC homologs.  相似文献   

12.
ATP-binding cassette (ABC) transporters are integral membrane proteins that actively transport molecules across cell membranes. In Escherichia coli they consist primarily of import systems that involve in addition to the ABC transporter itself a substrate binding protein and outer membrane receptors or porins, and a number of transporters with varied functions. Recent crystal structures of a number of ATPase domains, substrate binding proteins, and full-length transporters have given new insight in the molecular basis of transport. Bioinformatics approaches allow an approximate identification of all ABC transporters in E. coli and their relation to other known transporters. Computational approaches involving modeling and simulation are beginning to yield insight into the dynamics of the transporters. We summarize the function of the known ABC transporters in E. coli and mechanistic insights from structural and computational studies.  相似文献   

13.
In bacteria, a subset of membrane proteins insert into the membrane via the Sec apparatus with the assistance of the widely conserved essential membrane protein insertase YidC. After threading into the SecYEG translocon, transmembrane segments of nascent proteins are thought to exit the translocon via a lateral gate in SecY, where YidC facilitates their transfer into the lipid bilayer. Interactions between YidC and components of the Sec apparatus are critical to its function. The first periplasmic loop of YidC interacts directly with SecF. We sought to identify the regions or residues of YidC that interact with SecY or with additional components of the Sec apparatus other than SecDF. Using a synthetic lethal screen, we identified residues of YidC that, when mutated, led to dependence on SecDF for viability. Each residue identified is highly conserved among YidC homologs; most lie within transmembrane domains. Overexpression of SecY in the presence of two YidC mutants partially rescued viability in the absence of SecDF, suggesting that the corresponding wild-type YidC residues (G355 and M471) participate in interactions, direct or indirect, with SecY. Staphylococcus aureus YidC complemented depletion of YidC, but not of SecDF, in Escherichia coli. G355 of E. coli YidC is invariant in S. aureus YidC, suggesting that this highly conserved glycine serves a conserved function in interactions with SecY. This study demonstrates that transmembrane residues are critical in YidC interactions with the Sec apparatus and provides guidance on YidC residues of interest for future structure-function analyses.  相似文献   

14.
Tail-anchored membrane proteins (TAMPs) are relatively simple membrane proteins characterized by a single transmembrane domain (TMD) at their C-terminus. Consequently, the hydrophobic TMD, which acts as a subcellular targeting signal, emerges from the ribosome only after termination of translation precluding canonical co-translational targeting and membrane insertion. In contrast to the well-studied eukaryotic TAMPs, surprisingly little is known about the cellular components that facilitate the biogenesis of bacterial TAMPs. In this study, we identify DjlC and Flk as bona fide Escherichia coli TAMPs and show that their TMDs are necessary and sufficient for authentic membrane targeting of the fluorescent reporter mNeonGreen. Using strains conditional for the expression of known E. coli membrane targeting and insertion factors, we demonstrate that the signal recognition particle (SRP), its receptor FtsY, the chaperone DnaK and insertase YidC are each required for efficient membrane localization of both TAMPs. A close association between the TMD of DjlC and Flk with both the Ffh subunit of SRP and YidC was confirmed by site-directed in vivo photo-crosslinking. In addition, our data suggest that the hydrophobicity of the TMD correlates with the dependency on SRP for efficient targeting.  相似文献   

15.
The cDNAs CnHAK1 and CnHAK2, encoding K+ transporters, were amplified from the leaves of the seagrass Cymodocea nodosa. None of these transporters suppressed the K+ deficiency of a Saccharomyces cerevisiae mutant, but both suppressed the equivalent defect of an Escherichia coli mutant. Overexpression of the transporter CnHAK1, but not CnHAK2, mediated very rapid K+ or Rb+ influxes in the E. coli mutant. The concentration dependence of these influxes demonstrated that CnHAK1 is a low-affinity K+ transporter, which does not discriminate between K+ and Rb+. CnHAK1 expressed in E. coli worked in reverse when the external K+ concentrations were low, and we established the condition of a simple functional test of K+ loss for transporters of the Kup-HAK family. In comparison with its homologue barley transporter HvHAK2, CnHAK1 was insensitive to Na+.  相似文献   

16.
The YidC/Oxa1/Alb3 family proteins are involved in membrane protein biogenesis in bacteria, mitochondria, and chloroplasts. Recent studies show that YidC uses a channel-independent mechanism to insert a class of membrane proteins into the membrane. Bacillus subtilis has two YidC homologs, SpoIIIJ (YidC1) and YidC2 (YqjG); the former is expressed constitutively, while the latter is induced when the SpoIIIJ activity is compromised. MifM is a substrate of SpoIIIJ, and its failure in membrane insertion is accompanied by stable ribosome stalling on the mifM-yidC2 mRNA, which ultimately facilitates yidC2 translation. While mutational inactivation of SpoIIIJ has been known to induce yidC2 expression, here, we show that the level of this induction is lower than that observed when the membrane insertion signal of MifM is defective. Moreover, this partial induction of YidC2 translation is lowered further when YidC2 is overexpressed in trans. These results suggest that YidC2 is able to insert MifM into the membrane and to release its translation arrest. Thus, under SpoIIIJ-deficient conditions, YidC2 expression is subject to MifM-mediated autogenous feedback repression. Our results show that YidC2 uses a mechanism that is virtually identical to that used by SpoIIIJ; Arg75 of YidC2 in its intramembrane yet hydrophilic cavity is functionally indispensable and requires negatively charged residues of MifM as an insertion substrate. From these results, we conclude that MifM monitors the total activities of the SpoIIIJ and the YidC2 pathways to control the synthesis of YidC2 and to maintain the cellular capability of the YidC mode of membrane protein biogenesis.  相似文献   

17.
GalP is the membrane protein responsible for H+-driven uptake of D-galactose intoEscherichia coli. It is suggested to be the bacterial equivalent of the mammalian glucose transporter, GLUT1, since these proteins share sequence homology, recognise and transport similar substrates and are both inhibited by cytochalasin B and forskolin. The successful over-production of GalP to 35–55% of the total inner membrane protein ofE. coli has allowed direct physical measurements on isolated membrane preparations. The binding of the antibiotics cytochalasin B and forskolin could be monitored from changes in the inherent fluorescence of GalP, enabling derivation of a kinetic mechanism describing the interaction between the ligands and GalP. The binding of sugars to GalP produces little or no change in the inherent fluorescence of the transporter. However, the binding of transported sugars to GalP produces a large increase in the fluorescence of 8-anilino-1-naphthalene sulphonate (ANS) excited via tryptophan residues. This has allowed a binding step, in addition to two putative translocation steps, to be measured. From all these studies a basic kinetic mechanism for the transport cycle under non-energised conditions has been derived. The ease of genetical manipulation of thegalP gene inE. coli has been exploited to mutate individual amino acid residues that are predicted to play a critical role in transport activity and/or the recognition of substrates and antibiotics. Investigation of these mutant proteins using the fluorescence measurements should elucidate the role of individual residues in the transport cycle as well as refine the current model.Abbreviations GalP galactose-H+ transporter - AraE arabinose-H+ transporter - GLUT1 human erythrocyte glucose transporter requests for offprints: Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2UH, UK  相似文献   

18.
In all domains of life Oxa1p-like proteins are involved in membrane protein biogenesis. Bacillus subtilis, a model organism for gram-positive bacteria, contains two Oxa1p homologs: SpoIIIJ and YqjG. These molecules appear to be mutually exchangeable, although SpoIIIJ is specifically required for spore formation. SpoIIIJ and YqjG have been implicated in a posttranslocational stage of protein secretion. Here we show that the expression of either spoIIIJ or yqjG functionally compensates for the defects in membrane insertion due to YidC depletion in Escherichia coli. Both SpoIIIJ and YqjG complement the function of YidC in SecYEG-dependent and -independent membrane insertion of subunits of the cytochrome o oxidase and F1Fo ATP synthase complexes. Furthermore, SpoIIIJ and YqjG facilitate membrane insertion of F1Fo ATP synthase subunit c from both E. coli and B. subtilis into inner membrane vesicles of E. coli. When isolated from B. subtilis cells, SpoIIIJ and YqjG were found to be associated with the entire F1Fo ATP synthase complex, suggesting that they have a role late in the membrane assembly process. These data demonstrate that the Bacillus Oxa1p homologs have a role in membrane protein biogenesis rather than in protein secretion.The YidC/OxaI/Alb3 protein family plays a crucial role in membrane protein biogenesis by facilitating the insertion of a specific subset of membrane proteins (for reviews, see references 20 and 24). In mitochondria, the OxaI protein is essential for insertion of both nucleus- and mitochondrion-encoded proteins into the inner membrane (39). The OxaI homolog of Escherichia coli, designated YidC, is known to play a role in two different membrane protein insertion pathways. Some proteins, such as subunit c of the rotary domain of the F1Fo ATP synthase (Foc) (47), MscL (10), M13 (34), and Pf3 (5), insert via the YidC-only pathway. YidC also functions in concert with the protein-conducting channel SecYEG in membrane insertion of subunit a of cytochrome o oxidase (CyoA) (8, 44) and subunit a of the F1Fo ATP synthase (23, 53, 54). In addition, YidC has been implicated in the folding of a membrane-inserted lactose permease (30) and the binding protein-dependent maltose ABC transporter (50).Members of the YidC/OxaI/Alb3 protein family are found in all three domains of life, and the number of paralogs per cell or organelle ranges from one (most gram-negative bacteria) to six (Arabidopsis thaliana). The length of Oxa1p-like proteins varies considerably, from just over 200 amino acids (in most gram-positive bacteria) to 795 amino acids (Chlamydophila pneumoniae) (52). However, in all Oxa1p proteins, a conserved region consisting of about 200 amino acids can be recognized, which comprises five putative transmembrane segments, as experimentally demonstrated for E. coli YidC (33). Overall, the amino acid sequence conservation among Oxa1p homologs is low (17). Bacillus subtilis contains two membrane proteins, SpoIIIJ and YqjG, with significant similarity to proteins belonging to the YidC/OxaI/Alb3 family. Previous gene inactivation analysis showed that a single paralog is sufficient for cell viability during vegetative growth of B. subtilis, while a double knockout led to a lethal phenotype (29, 41). SpoIIIJ is essential for activation of a prespore-specific sigma factor (9, 36), and cells with spoIIIJ deleted are incapable of spore formation. Sporulation is blocked at stage III, directly after completion of prespore engulfment (9). YqjG cannot complement SpoIIIJ in this process, but the exact reason for the specific requirement for SpoIIIJ is unknown. Previous studies indicated that the stability of various secretory proteins (e.g., LipA and PhoA) was strongly affected under YqjG- and SpoIIIJ-limiting conditions, while the insertion or stability of a number of membrane proteins tested appeared to be unaffected (41). These data suggested that YqjG and SpoIIIJ, unlike the other Oxa1p-like proteins, play a role in protein secretion. Here we show that both YidC homologs in B. subtilis complement the E. coli growth defect due to a YidC depletion and functionally replace YidC in Sec-dependent and -independent membrane protein insertion. In vitro insertion assays demonstrated that membrane insertion of Foc of both E. coli and B. subtilis is mediated by SpoIIIJ and YqjG. In addition, the entire F1Fo ATP synthase of B. subtilis was found to copurify with both SpoIIIJ and YqjG, suggesting that these proteins have a role in a late stage of the assembly of this membrane protein complex.  相似文献   

19.
ATP-binding cassette (ABC) transporters are ubiquitous integral membrane proteins, which catalyze the translocation of molecules across biological membranes in an ATP-dependent manner. Despite the diversity in the transported substrates, they all share the same architecture, comprised of two transmembrane (TMD) and two nucleotide-binding domains (NBD). Members of the bacteriocin ABC transporter subfamily feature a special domain, belonging to the C39 (cystein protease family 39) peptidase protein family. These domains are assumed to cleave a C-terminal signal sequence from the protein or peptide substrate before or during the transport process. Although the C39 peptidase-like domain of the ABC transporter haemolysin B from E. coli shows no proteolytic activity, it is essential for the function of this transporter. In order to elucidate the contribution of the isolated C39 peptidase-like domain in the whole transport process, the backbone and side chain 1H, 15N and 13C-NMR chemical shifts have been assigned.  相似文献   

20.
The function of the essential inner membrane protein (IMP) YidC in Escherichia coli has been studied for a limited number of model IMPs and primarily using targeted approaches. These studies suggested that YidC acts at the level of insertion, folding, and quality control of IMPs, both in the context of the Sec translocon and as a separate entity. To further our understanding of YidC's role in IMP biogenesis, we screened a random overexpression library for factors that rescued the growth of cells upon YidC depletion. We found that the overexpression of the GadX and GadY regulators of the glutamate-dependent acid resistance system complemented the growth defect of YidC-depleted cells. Evidence is presented that GadXY overexpression counteracts the deleterious effects of YidC depletion on at least two fronts. First, GadXY prepares the cells for the decrease in respiratory capacity upon the depletion of YidC. Most likely, GadXY-regulated processes reduce the drop in proton-motive force that impairs the fitness of YidC-depleted cells. Second, in GadXY-overproducing cells increased levels of the general chaperone GroEL cofractionate with the inner membranes, which may help to keep newly synthesized inner membrane proteins in an insertion-competent state when YidC levels are limiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号