首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A matrix formulation of the conformational partition function has been used to examine helix ? sheet transitions in homopolyamino acids. α-Helices are weighted by Zimm-Bragg parameters σ and s. Antiparallel β-sheets with tight bends are weighted by the parameters t, δ, and τ, where t is the propagation parameter. In addition, each bend contributes a factor δ, and each residue in the sheet that does not have a partner in the preceding strand contributes a factor τ. The helix can be the dominant conformation in a long chain only if two conditions are satisfied simultaneously: (i) s > 1 , and (ii) either s > t, or σ, δ, and τ are assigned values that inflict a greater penalty on antiparallel sheets than on helices. The maximum amount of coil developed during the helix ? sheet transition is strongly influenced by the size of τ, but it is only weakly dependent on the size of δ. Previously reported optical rotatory dispersion, CD, laser Raman, and nmr studies of thermally induced α ? β transitions in homopolyamino acids, notably poly(L -lysine), demonstrate that little random coil is present. If the random coil content is to remain small during the helix ? sheet transition, τ must be significantly less than unity. A small value for τ means that there is a significant penalty assessed to lysyl residues in an antiparallel sheet that do not have a partner in a preceding strand.  相似文献   

2.
Conformational energy computations were carried out on the packing of two identical collagenlike poly(tripeptide) triple helices in order to determine the energetics of favorable packing arrangements as a function of composition and chain length. The triple helices considered were [CH3CO-(Gly-Pro-Pro)nt-NHCH3]3 and [CH3CO-(Gly-Pro-Ala)nt-NHCH3]3, with nt = 3, 4, and 5. The packing arrangements were characterized in terms of their intermolecular energies and orientation angles Ω0 of the axes of the two triple helices. For short triple helices (nt = 3 or 4), many low-energy orientations, with a wide range of values of Ω0, can occur. When the triple helices are longer (nt = 5), the only low-energy packing arrangements of two poly(Gly-Pro-Pro) triple helices are those with a nearly parallel orientation of the two helix axes, with Ω0 ≈ ?10°. This result accounts for the observed parallel (rather than antiparallel) arrangement of collagen molecules in microfibril assembly and stands in contrast to the preferred antiparallel arrangement of a pair of α-helices. Since the preference for a parallel arrangement of these collagenlike triple helices is less pronounced in the case of poly(Gly-Pro-Ala), it appears that this preference is a consequence of the frequent presence of imino acids in position Y of the Gly-X-Y repeating triplet. In poly(Gly-Pro-Ala), most of the low-energy packing arrangements are parallel, but a few arrangements with low energies and high values of |Ω0| occur. These packing arrangements have a high energy, however, when Pro is substituted for Ala, and thus they are not accessible for collagen with natural amino (imino) acid sequences. The computations reported here account for some of the characteristic features of collagen packing in terms of the local interaction energies of a pair of triple helices.  相似文献   

3.
The crystal structure of Ton1535, a hypothetical protein from Thermococcus onnurineus NA1, was determined at 2.3 Å resolution. With two antiparallel α‐helices in a helix‐turn‐helix motif as a repeating unit, Ton1535 consists of right‐handed coiled N‐ and C‐terminal regions that are stacked together using helix bundles containing a left‐handed helical turn. One left‐handed helical turn in the right‐handed coiled structure produces two unique structural properties. One is the presence of separated concave grooves rather than one continuous concave groove, and the other is the contribution of α‐helices on the convex surfaces of the N‐terminal region to the extended surface of the concave groove of the C‐terminal region and vice versa. Proteins 2014; 82:1072–1078. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Examples of homomeric β‐helices and β‐barrels have recently emerged. Here we generalize the theory for the shear number in β‐barrels to encompass β‐helices and homomeric structures. We introduce the concept of the “β‐strip,” the set of parallel or antiparallel neighboring strands, from which the whole helix can be generated giving it n‐fold rotational symmetry. In this context, the shear number is interpreted as the sum around the helix of the fixed register shift between neighboring identical β‐strips. Using this approach, we have derived relationships between helical width, pitch, angle between strand direction and helical axis, mass per length, register shift, and number of strands. The validity and unifying power of the method is demonstrated with known structures including α‐hemolysin, T4 phage spike, cylindrin, and the HET‐s(218‐289) prion. From reported dimensions measured by X‐ray fiber diffraction on amyloid fibrils, the relationships can be used to predict the register shift and the number of strands within amyloid protofilaments. This was used to construct models of transthyretin and Alzheimer β(40) amyloid protofilaments that comprise a single strip of in‐register β‐strands folded into a “β‐strip helix.” Results suggest both stabilization of an individual β‐strip helix and growth by addition of further β‐strip helices can involve the same pair of sequence segments associating with β‐sheet hydrogen bonding at the same register shift. This process would be aided by a repeat sequence. Hence, understanding how the register shift (as the distance between repeat sequences) relates to helical dimensions will be useful for nanotube design.  相似文献   

5.
A 12-residue peptide designed to form an alpha-helix and self-associate into an antiparallel 4-alpha-helical bundle yields a 0.9 A crystal structure revealing unanticipated features. The structure was determined by direct phasing with the "Shake-and-Bake" program, and contains four crystallographically distinct 12-mer peptide molecules plus solvent for a total of 479 atoms. The crystal is formed from nearly ideal alpha-helices hydrogen bonded head-to-tail into columns, which in turn pack side-by-side into sheets spanning the width of the crystal. Within each sheet, the alpha-helices run antiparallel and are closely spaced (9-10 A center-to-center). The sheets are more loosely packed against each other (13-14 A between helix centers). Each sheet is amphiphilic: apolar leucine side chains project from one face, charged lysine and glutamate side chains from the other face. The sheets are stacked with two polar faces opposing and two apolar faces opposing. The result is a periodic biomaterial composed of packed protein bilayers, with alternating polar and apolar interfaces. All of the 30 water molecules in the unit cell lie in the polar interface or between the stacked termini of helices. A section through the sheet reveals that the helices packed at the apolar interface resemble the four-alpha-helical bundle of the design, but the helices overhang parts of the adjacent bundles, and the helix crossing angles are less steep than intended (7-11 degrees rather than 18 degrees).  相似文献   

6.
Structural features of double helices formed by polypeptides with alternating L- and D-amino acid residues were analysed. It was found that the map of short distances (less than 4 A) between protons of the two backbones is unique for each double helix type and even its fragment implies unambiguously parameters of the helix (i.e. parallel or antiparallel, handedness, pitch of helix, relative shift of polypeptide chains). By analysis of two-dimensional 1H-NMR spectra (COSY, RELSY, HOHAHA, NOESY), proton resonances of [Val1]gramicidin A (GA) in the ethanol solution were assigned. The results obtained show that the solution contains five stable conformations of GA in comparable concentrations. Monomer of GA is in a random coil conformation. Specific maps of short interproton distances for the other four species (1-4) were obtained by means of two dimensional nuclear Overhauser effect spectroscopy. The maps as well as spin-spin couplings of the H-NC alpha-H protons and solvent accessibilities of the individual amide groups correspond to four types of double helices pi pi LD 5,6 with 5.6 residues per turn. The double helices are related to the Veatch species 1-4 of GA. Species 1 and 2 are left-handed parallel double helices increase increase pi pi LD 5,6 with different relative shift of polypeptide chains. Species 3 is a left-handed antiparallel double helix increase decrease pi pi LD 5,6 and species 4 is a right-handed parallel double helix increase increase LD 5,6. In the dimers helices are fixed by the maximum number (28) of interbackbone hydrogen bonds NH...O = C possible for these structures. Species 1, 3 and 4 have C2 symmetry axes. Relationship between gramicidin A spatial structures induced by various media is discussed.  相似文献   

7.
The rotational strengths and oscillator strengths of the nπ* band and ππ* exciton bands have been calculated for antiparallel and parallel β-structures of varying length and width. The results are compared with experiment and with previous theoretical treatments of β-structures. The generally good agreement of calculations on the antiparallel β-structure with experimental results on poly-L -lysine and poly-L -serine indicates that these systems are indeed in the antiparallel conformation. It is found that the exciton component strongest in absorption shifts to longer wavelengths as the width of an antiparallel structure increases, and it is suggested that the position of the ππ* absorption band may be a useful criterion of sheet width. The results also reconcile the linear dichroism measurements of Rosenheck and Sommer on poly-L -lysine films with an anti-parallel structure. Calculations on parallel β-structures indicate that the CD spectra of this form will be rather similar to that of the antiparallel form. However, the major absorption band in the antiparallel form is associated with a small positive CD band, while in the parallel form it coincides with a large negative CD band. Finally, it is pointed out that the large positive CD bands predicted for single-stranded parallel and antiparallel β-structures at about 200 mμ render unlikely the suggestion that random-coil polypeptides contain a substantial fraction of extended chain.  相似文献   

8.
α-Prolamins are the major seed storage proteins of species of the grass tribe Andropogonea. They are unusually rich in glutamine, proline, alanine, and leucine residues and their sequences show a series of tandem repeats presumed to be the result of multiple intragenic duplication. Two new sequences of α-prolamin clones from Coix (pBCX25.12 and pBCX25.10) are compared with similar clones from maize and Sorghum in order to investigate evolutionary relationships between the repeat motifs and to propose a schematic model for their three-dimensional structure based on hydrophobic membrane-helix propensities and helical “wheels.” A scheme is proposed for the most recent events in the evolution of the central part of the molecule (repeats 3 to 8) which involves two partial intragenic duplications and in which contemporary odd-numbered and even-numbered repeats arise from common ancestors, respectively. Each pair of repeats is proposed to form an antiparallel α-helical hairpin and that the helices of the molecule as a whole are arranged on a hexagonal net. The majority of helices show six faces of alternating hydrophobic and polar residues, which give rise to intersticial holes around each helix which alternate in chemical character. The model is consistent with proteins which contain different numbers of repeats, with oligomerization and with the dense packaging of α-prolamins within the protein body of the seed endosperm. © 1993 Wiley-Liss, Inc.  相似文献   

9.
The crystal structure of the B-polymorph of amylose appears to be based on double-stranded helices. The individual strands are in a right-handed six-fold helical conformation repeating in 20.8 Å and are wound parallel around each other. The steric disposition of O-6 is gt. The double helices pack in a hexagonal unit-cell (ab  18.50 Å, c (fiber repeat)  10.40 Å, γ  120°), with two helices (12 d-glucose residues) per cell. The helices are packed antiparallel and leave an open channel within a hexagonal array that is filled with water molecules. The reliability of the structure analysis is indicated by R  0.22. The structure of B-amylose is consistent with the diffraction diagrams of B-starches and accounts for the physical properties of such starches.  相似文献   

10.
Wayne L. Mattice 《Biopolymers》1985,24(12):2231-2242
The intramolecular formation of multiple clusters of interacting helices has been characterized in a homopolymer. The configuration partition function permits the formation of clusters in which the number of interacting helices may be as large as the greatest integer in n/2, where n denotes the number of amino acid residues in the chain. The theoretical formulation has its origin in a recent [Mattice, W. L. & Scheraga, H. A. (1984) Biopolymers 23 , 1701–1724], tractable matrix expression for the configuration partition function for intramolecular antiparallel β-sheet formation. Reassignment of the expression for one of the n(n+3)/2 elements in the sparse statistical weight matrix, along with a simple change in notation, converts that treatment into a matrix formulation of the configuration partition function for a chain containing multiple clusters of interacting antiparallel helices. The five statistical weights used are δ, fl, w, and the Zimm-Bragg σ and s. Each tight bend that connects two interacting helices contributes a factor of δ, fl is used in the weight for larger loops between interacting helices, and w arises from helix–helix interaction. The influence of the helix–helix interaction is well illustrated by two helix–coil transitions in a chain with n = 156 and σ = 0.001. In the absence of helix–helix interaction, the transition occurs by the nucleation and subsequent elongation of a small number of helices. When helix–helix interaction is attractive, the transition can occur by a different mechanism. Formation of a single pair of interacting helices is followed by addition of new helices to the initial cluster. In the latter process, individual helices experience relatively little growth after they are formed.  相似文献   

11.
Gramicidin A (gA) is a polypeptide antibiotic, which forms dimeric channels specific for monovalent cations in artificial and biological membranes. It is a polymorphic molecule that adopts a unique variety of helical conformations, including antiparallel double‐stranded ↑↓β5.6 or ↑↓β7.2 helices (number of residues per turn) and a single‐stranded β6.3 helix (the ‘channel form’). The behavior of gA‐Cs+ complex in the micelles of TX‐100 was studied in this work. Transfer of the complex into the micelles activates a cascade of sequential conformational transitions monitored by CD and FT‐IR spectroscopy: At the first step after Cs+ removal, the RH ↑↓β5.6 helix is formed, which has been discussed so far only hypothetically. Kinetics of the transitions was measured, and the activation parameters were determined. The activation energies of the ↑↓β5.6 → β‐helical monomer transition in dioxane and dioxane/water solutions were also measured for comparison. The presence of water raises the transition rate constant ~103 times but does not lead to crucial fall of the activation energy. All activation energies were found in the 20–25 kcal/mol range, i.e. much lower than would be expected for unwinding of the double helix (when 28 H‐bonds are broken simultaneously). These results can be accounted for in the light of local unfolding (or ‘cracking’) model for large scale conformational transitions developed by the P. G.Wolynes team [Miyashita O, Onuchic JN, Wolynes PG. Proc. Natl. Acad. Sci. USA 2003; 100: 12570‐12575.]. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
An analogue of the human granulocyte–macrophage colony‐stimulating factor (hGM‐CSF), hGM‐CSF(13–27)–Gly–(75–87) was synthesized by solid phase methodology. This analogue was designed to comprise helices A and C of the native growth factor, linked by a glycine bridge. Helices A and C form half of a four‐helix bundle motif in the crystal structure of the native factor and are involved in the interaction with α‐ and β‐chains of the heterodimeric receptor. A conformational analysis of the synthetic analogue by CD, two‐dimensional nmr spectroscopy, and molecular dynamics calculations is reported. The analogue is in a random structure in water and assumes a partially α‐helical conformation in a 1 : 1 trifluoroethanol/water mixture. The helix content in this medium is ∼ 70%. By 2D‐nmr spectroscopy, two helical segments were identified in the sequences corresponding to helices A and C. In addition to medium‐ and short‐range NOESY connectivities, a long‐range cross peak was found between the Cβ proton of Val16 and NH proton of His87 (using the numbering of the native protein). Experimentally derived interproton distances were used as restraints in molecular dynamics calculations, utilizing the x‐ray coordinates as the initial structure. The final structure is characterized by two helical segments in close spatial proximity, connected by a loop region. This structure is similar to that of the corresponding domain in the x‐ray structure of the native growth factor in which helices A and C are oriented in an antiparallel fashion. The N‐terminal residues Gly–Pro of helix C are involved in an irregular turn connecting the two helical segments. As a consequence, helix C is appreciably shifted and slightly rotated with respect to helix A compared to the x‐ray structure of the native growth factor. These small differences in the topology of the two helices could explain the lower biological activity of this analogue with respect to that of the native growth factor. © 1999 John Wiley & Sons, Inc. Biopoly 50: 545–554, 1999  相似文献   

13.
Sha R  Liu F  Seeman NC 《Biochemistry》2000,39(37):11514-11522
The Holliday junction is a central intermediate in genetic recombination. It contains four strands of DNA that are paired into four double helical arms flanking a branch point. In naturally occurring Holliday junctions, the sequence flanking the branch point contains 2-fold (homologous) symmetry. As a consequence of this symmetry, the junction can undergo a conformational isomerization known as branch migration, which relocates the site of branching. In the absence of proteins and in the presence of Mg(2+), the four arms are known to stack in pairs, forming two helical domains whose orientations are antiparallel. Nevertheless, the mechanistic models proposed for branch migration are all predicated on a parallel alignment of helical domains. Here, we have used antiparallel DNA double crossover molecules to demonstrate that branch migration can occur in antiparallel Holliday junctions. We have constructed a DNA double crossover molecule with three crossover points. Two adjacent branch points in this molecule are flanked by symmetric sequences. The symmetric crossover points are held immobile by the third crossover point, which is flanked by asymmetric sequences. Restriction of the helices that connect the immobile junction to the symmetric junctions releases this constraint. The restricted molecule undergoes branch migration, even though it is constrained to an antiparallel conformation.  相似文献   

14.
Ups1 forms a complex with Mdm35 and is critical for the transport of phosphatidic acid (PA) from the mitochondrial outer membrane to the inner membrane. We report the crystal structure of the Ups1‐Mdm35‐PA complex and the functional characterization of Ups1‐Mdm35 in PA binding and transfer. Ups1 features a barrel‐like structure consisting of an antiparallel β‐sheet and three α‐helices. Mdm35 adopts a three‐helical clamp‐like structure to wrap around Ups1 to form a stable complex. The β‐sheet and α‐helices of Ups1 form a long tunnel‐like pocket to accommodate the substrate PA, and a short helix α2 acts as a lid to cover the pocket. The hydrophobic residues lining the pocket and helix α2 are critical for PA binding and transfer. In addition, a hydrophilic patch on the surface of Ups1 near the PA phosphate‐binding site also plays an important role in the function of Ups1‐Mdm35. Our study reveals the molecular basis of the function of Ups1‐Mdm35 and sheds new light on the mechanism of intramitochondrial phospholipid transport by the MSF1/PRELI family proteins.  相似文献   

15.
The Z‐molecule is a small, engineered IgG‐binding affinity protein derived from the immunoglobulin‐binding domain B of Staphylococcus aureus protein A. The Z‐domain consists of 58 amino acids forming a well‐defined antiparallel three‐helix structure. Two of the three helices are involved in ligand binding, whereas the third helix provides structural support to the three‐helix bundle. The small size and the stable three‐helix structure are two attractive properties comprised in the Z‐domain, but a further reduction in size of the protein is valuable for several reasons. Reduction in size facilitates synthetic production of any protein‐based molecule, which is beneficial from an economical viewpoint. In addition, a smaller protein is easier to manipulate through chemical modifications. By omitting the third stabilizing helix from the Z‐domain and joining the N‐ and C‐termini by a native peptide bond, the affinity protein obtains the advantageous properties of a smaller scaffold and in addition becomes resistant to exoproteases. We here demonstrate the synthesis and evaluation of a novel cyclic two‐helix Z‐domain. The molecule has retained affinity for its target protein, is resistant to heat treatment, and lacks both N‐ and C‐termini. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
Solid state NMR measurements on selectively 13C‐labeled RADA16‐I peptide (COCH3–RADARADARADARADA–NH2) were used to obtain new molecular level information on the conversion of α‐helices to β‐sheets through self‐assembly in the solid state with increasing temperature. Isotopic labeling at the A4 Cβ site enabled rapid detection of 13C NMR signals. Heating to 344–363 K with simultaneous NMR detection allowed production of samples with systematic variation of α‐helix and β‐strand content. These samples were then probed at room temperature for intermolecular 13C–13C nuclear dipolar couplings with the PITHIRDS‐CT NMR experiment. The structural transition was also characterized by Fourier transform infrared spectroscopy and wide angle X‐ray diffraction. Independence of PITHIRDS‐CT decay shapes on overall α‐helical and β‐strand content infers that β‐strands are not observed without association with β‐sheets, indicating that β‐sheets are formed at elevated temperatures on a timescale that is fast relative to the NMR experiment. PITHIRDS‐CT NMR data were compared with results of similar measurements on RADA16‐I nanofibers produced by self‐assembly in aqueous salt solution. We report that β‐sheets formed through self‐assembly in the solid state have a structure that differs from those formed through self‐assembly in the solution state. Specifically, solid state RADA16‐I self‐assembly produces in‐register parallel β‐sheets, whereas nanofibers are composed of stacked parallel β‐sheets with registry shifts between adjacent β‐strands in each β‐sheet. These results provide evidence for environment‐dependent self‐assembly mechanisms for RADA16‐I β‐sheets as well as new constraints on solid state self‐assembled structures, which must be avoided to maximize solution solubility and nanofiber yields. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Poly(γ-benzyl-d-l-glutamate) with strict alternation of l and d residues is found to exist, in addition to the αDL and πDL4.4 helical structures already described (Heitz et al., 1975a), in four more helical structures. Models based on double helices made of antiparallel strands are proposed for all four structures, based on infrared, X-ray and electron diffraction data. These double helices are, like the single-stranded πDL helices, specific to polypeptides with a strict stereosequence of alternating l and d residues. The diameter of the helical core of three of these helices appears to depend on the dimensions of the solvent molecules. Conformational angles (located in the β regions) and atomic co-ordinates determined by conformational energy analysis are given for the four structures. Experimental conditions used to obtain these helices, and to induce transconformations between the various helical structures of PBd-lG are described. The present investigations on PBd-lG help to make more precise the structure and geometry of models proposed (Veatch et al., 1974) for the antibiotic gramicidin A.  相似文献   

18.
Pei‐Kun Yang 《Biopolymers》2014,101(8):861-870
To explore the effect of an external electrostatic field (EEF) on the stability of protein conformations, the molecular dynamic modeling approach was applied to evaluate the effect of an EEF along the x or y direction on a water cluster containing a parallel or antiparallel β sheet structure. The β sheet structure contained two strands with a (Gly)3 sequence separated by a distance d along the x direction. The mean forces between the two strands along the x direction were computed from the trajectories of molecular dynamics simulations. In the absence of the EEF, the forces between the two strands in vacuum were repulsive and attractive in the parallel and antiparallel β sheet structures, respectively. In contrast, the mean forces between the two strands in water were attractive in both the parallel and antiparallel β sheet structures. This is because the electric interactions between the two strands were shielded by water, and the hydrophobic effect dominated the interaction between the two strands. When an EEF >50 MV/cm was applied to the water cluster, the attractive force between the two strands in the parallel and antiparallel β sheet structures decreased and increased, respectively. Further, the binding affinity between the two strands in the parallel and antiparallel β sheet structures also decreased and increased, respectively. This is because the large EEF leads to dielectric saturation, and consequently reduces the effects of the dielectric shielding and hydrophobic interactions. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 861–870, 2014.  相似文献   

19.
Cry2Ab, a pore‐forming toxin derived from Bacillus thuringiensis, is widely used as a bio‐insecticide to control lepidopteran pests around the world. A previous study revealed that proteolytic activation of Cry2Ab by Plutella xylostella midgut juice was essential for its insecticidal activity against P. xylostella, although the exact molecular mechanism remained unknown. Here, we demonstrated for the first time that proteolysis of Cry2Ab uncovered an active region (the helices α4 and α5 in Domain I), which was required for the mode of action of Cry2Ab. Either the masking or the removal of helices α4 and α5 mediated the pesticidal activity of Cry2Ab. The exposure of helices α4 and α5 did not facilitate the binding of Cry2Ab to P. xylostella midgut receptors but did induce Cry2Ab monomer to aggregate and assemble a 250‐kDa prepore oligomer. Site‐directed mutagenesis assay was performed to generate Cry2Ab mutants site directed on the helices α4 and α5, and bioassays suggested that some Cry2Ab variants that could not form oligomers had significantly lowered their toxicities against P. xylostella. Taken together, our data highlight the importance of helices α4 and α5 in the mode of action of Cry2Ab and could lead to more detailed studies on the insecticidal activity of Cry2Ab.  相似文献   

20.
B. licheniformis exo‐small β‐lactamase (ESBL) has a complex architecture with twelve α helices and a five‐stranded beta sheet. We replaced, separately or simultaneously, three of the ESBL α helices with prototype amphiphatic helices from a catalog of secondary structure elements. Although the substitutes bear no sequence similarity to the originals and pertain to unrelated protein families, all the engineered ESBL variants were found able to fold in native like structures with in vitro and in vivo enzymic activity. The triple substituted variant resembles a primitive protein, with folding defects such as a strong tendency to oligomerization and very low stability; however it mimics a non homologous recombinant abandoning the family sequence space while preserving fold. The results test protein folding and evolution theories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号