首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ring-shaped hetero-oligomeric chaperonin TRiC/CCT uses ATP to fold a diverse subset of eukaryotic proteins. To define the basis of TRiC/CCT substrate recognition, we mapped the chaperonin interactions with the VHL tumor suppressor. VHL has two well-defined TRiC binding determinants. Each determinant contacts a specific subset of chaperonin subunits, indicating that TRiC paralogs exhibit distinct but overlapping specificities. The substrate binding site in these subunits localizes to a helical region in the apical domains that is structurally equivalent to that of bacterial chaperonins. Transferring the distal portion of helix 11 between TRiC subunits suffices to transfer specificity for a given substrate motif. We conclude that the architecture of the substrate binding domain is evolutionarily conserved among eukaryotic and bacterial chaperonins. The unique combination of specificity and plasticity in TRiC substrate binding may diversify the range of motifs recognized by this chaperonin and contribute to its unique ability to fold eukaryotic proteins.  相似文献   

2.
To reach a functional and energetically stable conformation, many proteins need molecular helpers called chaperonins. Among the group II chaperonins, CCT proteins provide crucial machinery for the stabilization and proper folding of several proteins in the cytosol of eukaryotic cells through interactions that are subunit-specific and geometry-dependent. CCT proteins are made up of eight different subunits, all with similar sequences, positioned in a precise arrangement. Each subunit has been proposed to have a specialized function during the binding and folding of the CCT protein substrate. Here, we demonstrate that functional divergence occurred after several CCT duplication events due to the fixation of amino acid substitutions by positive selection. Sites critical for ATP binding and substrate binding were found to have undergone positive selection and functional divergence predominantly in subunits that bind tubulin but not actin. Furthermore, we show clear functional divergence between CCT subunits that bind the C-terminal domains of actin and tubulin and those that bind the N-terminal domains. Phylogenetic analyses could not resolve the deep relationships between most subunits, except for the groups alpha/beta/eta and delta/epsilon, suggesting several almost simultaneous ancient duplication events. Together, the results support the idea that, in contrast to homo-oligomeric chaperonins such as GroEL, the high divergence level between CCT subunits is the result of positive selection after each duplication event to provide a specialized role for each CCT subunit in the different steps of protein folding.  相似文献   

3.
The cytosolic chaperonin CCT is a 1‐MDa protein‐folding machine essential for eukaryotic life. The CCT interactome shows involvement in folding and assembly of a small range of proteins linked to essential cellular processes such as cytoskeleton assembly and cell‐cycle regulation. CCT has a classic chaperonin architecture, with two heterogeneous 8‐membered rings stacked back‐to‐back, enclosing a folding cavity. However, the mechanism by which CCT assists folding is distinct from other chaperonins, with no hydrophobic wall lining a potential Anfinsen cage, and a sequential rather than concerted ATP hydrolysis mechanism. We have solved the crystal structure of yeast CCT in complex with actin at 3.8 Å resolution, revealing the subunit organisation and the location of discrete patches of co‐evolving ‘signature residues’ that mediate specific interactions between CCT and its substrates. The intrinsic asymmetry is revealed by the structural individuality of the CCT subunits, which display unique configurations, substrate binding properties, ATP‐binding heterogeneity and subunit–subunit interactions. The location of the evolutionarily conserved N‐terminus of Cct5 on the outside of the barrel, confirmed by mutational studies, is unique to eukaryotic cytosolic chaperonins.  相似文献   

4.
Two mechanisms have thus far been characterized for the assistance by chaperonins of the folding of other proteins. The first and best described is that of the prokaryotic chaperonin GroEL, which interacts with a large spectrum of proteins. GroEL uses a nonspecific mechanism by which any conformation of practically any unfolded polypeptide interacts with it through exposed, hydrophobic residues. ATP binding liberates the substrate in the GroEL cavity where it is given a chance to fold. A second mechanism has been described for the eukaryotic chaperonin CCT, which interacts mainly with the cytoskeletal proteins actin and tubulin. Cryoelectron microscopy and biochemical studies have revealed that both of these proteins interact with CCT in quasi-native, defined conformations. Here we have performed a detailed study of the docking of the actin and tubulin molecules extracted from their corresponding CCT:substrate complexes obtained from cryoelectron microscopy and image processing to localize certain regions in actin and tubulin that are involved in the interaction with CCT. These regions of actin and tubulin, which are not present in their prokaryotic counterparts FtsA and FtsZ, are involved in the polymerization of the two cytoskeletal proteins. These findings suggest coevolution of CCT with actin and tubulin in order to counteract the folding problems associated with the generation in these two cytoskeletal protein families of new domains involved in their polymerization.  相似文献   

5.
We have investigated effects of salt ions on folding events of a helical miniprotein chicken villin headpiece subdomain HP36. Low concentrations of ions alter electrostatic interactions between charged groups of a protein and can change the populations of conformers. Here, we compare two data sets of folding simulations of HP36 in explicit water solvent with or without ions. For efficient sampling of the conformational space of HP36, the multicanonical replica‐exchange molecular dynamics method was employed. Our analyses suggest that salt alters salt‐bridging nature of the protein at later stages of folding at room temperature. Especially, more nonnative, nonlocal salt bridges are formed at near‐native conformations in pure water. Our analyses also show that such salt‐bridge formation hinders the fully native hydrophobic‐core packing at the final stages of folding. Proteins 2014; 82:933–943. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
The nonhomologous proteins actin and alpha- and beta-tubulin need the assistance of the cytosolic chaperonin containing TCP-1 (CCT) to reach their correct native state, and their folding requires a transient binary complex formation with CCT. We show that separate or combined deletion of three delineated hydrophobic sequences in actin disturbs the interaction with CCT. These sites are situated between residues 125-179, 244-285, and 340-375. Also, alpha- and beta-tubulin contain at least one recognition region, and intriguingly, it has a similar distribution of hydrophobic residues as region 244-285 in actin. Internal deletion of the sites in actin favor a model for cooperative binding of target proteins to CCT. Peptide mimetics, representing the binding regions, inhibit target polypeptide binding to CCT, suggesting that actin and tubulin contact similar CCT subunits. In addition, we show that actin recognition by class II chaperonins is different from that by class I.  相似文献   

7.
The chaperonin containing TCP-1 (CCT, also known as TRiC) is the only member of the chaperonin family found in the cytosol of eukaryotes. Like other chaperonins, it assists the folding of newly synthesised proteins. It is, however, unique in its specificity towards only a small subset of non-native proteins. We determined two crystal structures of mouse CCTgamma apical domain at 2.2 A and 2.8 A resolution. They reveal a surface patch facing the inside of the torus that is highly evolutionarily conserved and specific for the CCTgamma apical domain. This putative substrate-binding region consists of predominantly positively charged side-chains. It suggests that the specificity of this apical domain towards its substrate, partially folded tubulin, is conferred by polar and electrostatic interactions. The site and nature of substrate interaction are thus profoundly different between CCT and its eubacterial homologue GroEL, consistent with their different functions in general versus specific protein folding assistance.  相似文献   

8.
Folding to completion of actin and tubulin in the eukaryotic cytosol requires their interaction with cytosolic chaperonin CCT [chaperonin containing tailless complex polypeptide 1 (TCP-1)]. Three-dimensional reconstructions of nucleotide-free CCT complexed to either actin or tubulin show that CCT stabilizes both cytoskeletal proteins in open and quasi-folded conformations mediated through interactions that are both subunit specific and geometry dependent. Here we find that upon ATP binding, mimicked by the non-hydrolysable analog AMP-PNP (5'-adenylyl-imido-diphosphate), to both CCT-alpha-actin and CCT- beta-tubulin complexes, the chaperonin component undergoes concerted movements of the apical domains, resulting in the cavity being closed off by the helical protrusions of the eight apical domains. However, in contrast to the GroE system, generation of this closed state does not induce the release of the substrate into the chaperonin cavity, and both cytoskeletal proteins remain bound to the chaperonin apical domains. Docking of the AMP-PNP-CCT-bound conformations of alpha-actin and beta-tubulin to their respective native atomic structures suggests that both proteins have progressed towards their native states.  相似文献   

9.
The eukaryotic chaperonin containing T-complex polypeptide 1 (CCT) is required in vivo for the production of native actin and tubulin. It is a 900-kDa oligomer formed from two back-to-back rings, each containing eight different subunits surrounding a central cavity in which interactions with substrates are thought to occur. Here, we show that a monoclonal antibody recognizing the C terminus of the CCTalpha subunit can bind inside, and partially occlude, both cavities of apo-CCT. Rabbit reticulocyte lysate was programmed to synthesize beta-actin and alpha-tubulin in the presence and absence of anti-CCTalpha antibody. The binding of the antibody inside the cavity and its occupancy of a large part of it does not prevent the folding of beta-actin and alpha-tubulin by CCT, despite the fact that all the CCT in the in vitro translation reactions was continuously bound by two antibody molecules. Furthermore, no differences in the protease susceptibility of actin bound to CCT in the presence and absence of the monoclonal antibody were detected, indicating that the antibody molecules do not perturb the conformation of actin folding intermediates substantially. These data indicate that complete sequestration of substrate by CCT may not be required for productive folding, suggesting that there are differences in its folding mechanism compared with the Group I chaperonins.  相似文献   

10.
Many ATP-dependent molecular chaperones, including Hsp70, Hsp90, and the chaperonins GroEL/Hsp60, require cofactor proteins to regulate their ATPase activities and thus folding functions in vivo. One conspicuous exception has been the eukaryotic chaperonin CCT, for which no regulator of its ATPase activity, other than non-native substrate proteins, is known. We identify the evolutionarily conserved PhLP3 (phosducin-like protein 3) as a modulator of CCT function in vitro and in vivo. PhLP3 binds CCT, spanning the cylindrical chaperonin cavity and contacting at least two subunits. When present in a ternary complex with CCT and an actin or tubulin substrate, PhLP3 significantly diminishes the chaperonin ATPase activity, and accordingly, excess PhLP3 perturbs actin or tubulin folding in vitro. Most interestingly, however, the Saccharomyces cerevisiae PhLP3 homologue is required for proper actin and tubulin function. This cellular role of PhLP3 is most apparent in a strain that also lacks prefoldin, a chaperone that facilitates CCT-mediated actin and tubulin folding. We propose that the antagonistic actions of PhLP3 and prefoldin serve to modulate CCT activity and play a key role in establishing a functional cytoskeleton in vivo.  相似文献   

11.
Chaperonins are multisubunit protein-folding assemblies. They are composed of two distinct structural classes, which also have a characteristic phylogenetic distribution. Group I chaperonins (called GroEL/cpn60/hsp60) are present in Bacteria and eukaryotic organelles while group II chaperonins are found in Archaea (called the thermosome or TF55) and the cytoplasm of eukaryotes (called CCT or TriC). Gene duplication has been an important force in the evolution of group II chaperonins: Archaea possess one, two, or three homologous chaperonin subunit-encoding genes, and eight distinct CCT gene families (paralogs) have been described in eukaryotes. Phylogenetic analyses indicate that while the duplications in archaeal chaperonin genes have occurred numerous times independently in a lineage-specific fashion, the eight different CCT subunits found in eukaryotes are the products of duplications that occurred early and very likely only once in the evolution of the eukaryotic nuclear genome. Analyses of CCT sequences from diverse eukaryotic species reveal that each of the CCT subunits possesses a suite of invariant subunit-specific amino acid residues ("signatures"). When mapped onto the crystal structure of the archaeal chaperonin from Thermoplasma acidophilum, these signatures are located in the apical, intermediate, and equatorial domains. Regions that were found to be variable in length and/or amino acid sequence were localized primarily to the exterior of the molecule and, significantly, to the extreme tip of the apical domain (the "helical protrusion"). In light of recent biochemical and electron microscopic data describing specific CCT-substrate interactions, our results have implications for the evolution of subunit-specific functions in CCT.  相似文献   

12.
The β‐subunit of the human eukaryotic elongation factor 1 complex (heEF1β) plays a central role in the elongation step in eukaryotic protein biosynthesis, which essentially involves interaction with the α‐ and γ‐subunits (eEF1γ). To biophysically characterize heEF1β, we constructed 3 Escherichia coli expression vector systems for recombinant expression of the full length (FL‐heEF1β), N‐terminus (NT‐heEF1β), and the C‐terminus (CT‐heEF1β) regions of the protein. Our results suggest that heEF1β is predominantly alpha‐helical and possesses an accessible hydrophobic cavity in the CT‐heEF1β. Both FL‐heEF1β and NT‐heEF1β form dimers of size 62 and 30 kDa, respectively, but the CT‐heEF1β is monomeric. FL‐heEF1β interacts with the N‐terminus glutathione transferase‐like domain of heEF1γ (NT‐heEF1γ) to form a 195‐kDa complex or a 230‐kDa complex in the presence of oxidized glutathione. On the other hand, NT‐heEF1β forms a 170‐kDa complex with NT‐heEF1γ and a high molecular weight aggregate of size greater than 670 kDa. Surface plasmon resonance analysis confirmed that (by fitting the Langmuir 1:1 model) FL‐heEF1β associated with monomeric or dimeric NT‐heEF1γ at a rapid rate and slowly dissociated, suggesting strong functional affinity (KD = 9.6 nM for monomeric or 11.3 nM for dimeric NT‐heEF1γ). We postulate that the N‐terminus region of heEF1β may be responsible for its dimerization and the C‐terminus region of heEF1β modulates the formation of an ordered heEF1β‐γ oligomer, a structure that may be essential in the elongation step of eukaryotic protein biosynthesis.  相似文献   

13.
Chaperonins assist in the folding of nascent and misfolded proteins, though the mechanism of folding within the lumen of the chaperonin remains poorly understood. The archeal chaperonin from Methanococcus marapaludis, Mm-Cpn, shares the eightfold double barrel structure with other group II chaperonins, including the eukaryotic TRiC/CCT, required for actin and tubulin folding. However, Mm-Cpn is composed of a single species subunit, similar to group I chaperonin GroEL, rather than the eight subunit species needed for TRiC/CCT. Features of the β-sheet fold have been identified as sites of recognition by group II chaperonins. The crystallins, the major components of the vertebrate eye lens, are β-sheet proteins with two homologous Greek key domains. During refolding in vitro a partially folded intermediate is populated, and partitions between productive folding and off-pathway aggregation. We report here that in the presence of physiological concentrations of ATP, Mm-Cpn suppressed the aggregation of HγD-Crys by binding the partially folded intermediate. The complex was sufficiently stable to permit recovery by size exclusion chromatography. In the presence of ATP, Mm-Cpn promoted the refolding of the HγD-Crys intermediates to the native state. The ability of Mm-Cpn to bind and refold a human β-sheet protein suggests that Mm-Cpn may be useful as a simplified model for the substrate recognition mechanism of TRiC/CCT.  相似文献   

14.
The bundling of the N‐terminal, partial domain helix (Helix C′) of human erythroid α‐spectrin (αI) with the C‐terminal, partial domain helices (Helices A′ and B′) of erythroid β‐spectrin (βI) to give a spectrin pseudo structural domain (triple helical bundle A′B′C′) has long been recognized as a crucial step in forming functional spectrin tetramers in erythrocytes. We have used apparent polarity and Stern–Volmer quenching constants of Helix C′ of αI bound to Helices A′ and B′ of βI, along with previous NMR and EPR results, to propose a model for the triple helical bundle. This model was used as the input structure for molecular dynamics simulations for both wild type (WT) and αI mutant L49F. The simulation output structures show a stable helical bundle for WT, but not for L49F. In WT, four critical interactions were identified: two hydrophobic clusters and two salt bridges. However, in L49F, the region downstream of Helix C′ was unable to assume a helical conformation and one critical hydrophobic cluster was disrupted. Other molecular interactions critical to the WT helical bundle were also weakened in L49F, possibly leading to the lower tetramer levels observed in patients with this mutation‐induced blood disorder.  相似文献   

15.
HP36, the helical subdomain of villin headpiece, contains a hydrophobic core composed of three phenylalanine residues (Phe47, Phe51, and Phe58). Hydrophobic effects and electrostatic interactions were shown to be the critical factors in stabilizing this core and the global structure. To assess the interactions among Phe47, Phe51, and Phe58 residues and investigate how they affect the folding stability, we implanted 4‐fluorophenylalanine (Z) and 4‐methylphenylalanine (X) into the hydrophobic core of HP36. We chemically synthesized HP36 and its seven variants including four single mutants whose Phe51 or Phe58 was replaced with Z or X, and three double mutants whose Phe51 and Phe58 were both substituted. Circular dichroism and nuclear magnetic resonance measurements show that the variants exhibit a native HP36 like fold, of which F51Z and three double mutants are more stable than the wild type. Molecular modeling provided detailed interaction energy within the phenylalanine residues, revealing that electrostatic interactions dominate the stability modulation upon the introduction of 4‐fluorophenylalanine and 4‐methylphenylalanine. Our results show that these two non‐natural amino acids can successfully tune the interactions in a relatively compact hydrophobic core and the folding stability without inducing dramatic steric effects. Such an approach may be applied to other folded motifs or proteins. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 627–637, 2015.  相似文献   

16.
The eukaryotic cytosolic chaperonin CCT is a molecular machine involved in assisting the folding of proteins involved in important cellular processes. Like other chaperonins, CCT is formed by a double‐ring structure but, unlike all of them, each ring is composed of eight different, albeit homologous subunits. This complexity has probably to do with the specificity in substrate interaction and with the mechanism of protein folding that takes place during the chaperonin functional cycle, but its detailed molecular basis remains unknown. We have analyzed the known proteomes in search of residues that are differentially conserved in the eight subunits, as predictors of functional specificity (specificity‐determining positions; SDPs). We have found that most of these SDPs are located near the ATP binding site, and that they define four CCT clusters, corresponding to subunits CCT3, CCT6, CCT8 and CCT1/2/4/5/7. Our results point to a spatial organisation of the CCT subunits in two opposite areas of the ring and provide a molecular explanation for the previously described asymmetry in the hydrolysis of ATP. Proteins 2014; 82:703–707. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
MOTIVATION: The folding of many proteins in vivo and in vitro is assisted by molecular chaperones. A well-characterized molecular chaperone system is the chaperonin GroEL/GroES from Escherichia coli which has a homolog found in the eukaryotic cytosol called CCT. All chaperonins have a ring structure with a cavity in which the substrate protein folds. An interesting difference between prokaryotic and eukaryotic chaperonins is in the nature of the ATP-mediated conformational changes that their ring structures undergo during their reaction cycle. Prokaryotic chaperonins are known to exhibit a highly cooperative concerted change of their cavity surface while in eukaryotic chaperonins the change is sequential. Approximately 70% of proteins in eukaryotic cells are multi-domain whereas in prokaryotes single-domain proteins are more common. Thus, it was suggested that the different modes of action of prokaryotic and eukaryotic chaperonins can be explained by the need of eukaryotic chaperonins to facilitate folding of multi-domain proteins. RESULTS: Using a 2D square lattice model, we generated two large populations of single-domain and double-domain substrate proteins. Chaperonins were modeled as static structures with a cavity wall with which the substrate protein interacts. We simulated both concerted and sequential changes of the cavity surfaces and demonstrated that folding of single-domain proteins benefits from concerted but not sequential changes whereas double-domain proteins benefit also from sequential changes. Thus, our results support the suggestion that the different modes of allosteric switching of prokaryotic and eukaryotic chaperonin rings have functional implications as it enables eukaryotic chaperonins to better assist multi-domain protein folding.  相似文献   

18.
The organization and assembly of the cellulosome, an extracellular multienzyme complex produced by anaerobic bacteria, is mediated by the high‐affinity interaction of cohesin domains from scaffolding proteins with dockerins of cellulosomal enzymes. We have performed molecular dynamics simulations and free energy calculations on both the wild type (WT) and D39N mutant of the C. thermocellum Type I cohesin‐dockerin complex in aqueous solution. The D39N mutation has been experimentally demonstrated to disrupt cohesin‐dockerin binding. The present MD simulations indicate that the substitution triggers significant protein flexibility and causes a major change of the hydrogen‐bonding network in the recognition strips—the conserved loop regions previously proposed to be involved in binding—through electrostatic and salt‐bridge interactions between β‐strands 3 and 5 of the cohesin and α‐helix 3 of the dockerin. The mutation‐induced subtle disturbance in the local hydrogen‐bond network is accompanied by conformational rearrangements of the protein side chains and bound water molecules. Additional free energy perturbation calculations of the D39N mutation provide differences in the cohesin‐dockerin binding energy, thus offering a direct, quantitative comparison with experiments. The underlying molecular mechanism of cohesin‐dockerin complexation is further investigated through the free energy profile, that is, potential of mean force (PMF) calculations of WT cohesin‐dockerin complex. The PMF shows a high‐free energy barrier against the dissociation and reveals a stepwise pattern involving both the central β‐sheet interface and its adjacent solvent‐exposed loop/turn regions clustered at both ends of the β‐barrel structure.  相似文献   

19.
Small‐soluble amyloid oligomers are believed to play a significant role in the pathology of amyloid diseases. Recently, the atomic structure of a toxic oligomer formed by an 11 residue and its tandem repeat was found to have an out‐off register antiparallel β‐strands in the shape of a β‐barrel. In the present article we investigate the effect of mutations in the hydrophobic cores on the structure and dynamic of the β‐barrels using all atom multiple molecular dynamics simulations with an explicit solvent. Extending previous experiments with molecular dynamics simulations we systematically test how stability and formation of cylindrin depends on the interplay between hydrophobicity and steric effects of the core residues. We find that strong hydrophobic interactions between geometrically fitting residues keep the strands (both in register and out‐off‐register interface) in close proximity, which in turn stabilizes the side‐chain and main‐chain hydrogen bonds, and the salt bridges on the outer surface along the weak out‐of‐register interface. Our simulations also indicate presence of water molecules in the hydrophobic interior of the cylindrin β‐barrel.Proteins 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Nonsense‐mediated decay (NMD) is a eukaryotic quality control mechanism that degrades mRNAs carrying premature stop codons. In mammalian cells, NMD is triggered when UPF2 bound to UPF3 on a downstream exon junction complex interacts with UPF1 bound to a stalled ribosome. We report structural studies on the interaction between the C‐terminal region of UPF2 and intact UPF1. Crystal structures, confirmed by EM and SAXS, show that the UPF1 CH‐domain is docked onto its helicase domain in a fixed configuration. The C‐terminal region of UPF2 is natively unfolded but binds through separated α‐helical and β‐hairpin elements to the UPF1 CH‐domain. The α‐helical region binds sixfold more weakly than the β‐hairpin, whereas the combined elements bind 80‐fold more tightly. Cellular assays show that NMD is severely affected by mutations disrupting the beta‐hairpin binding, but not by those only affecting alpha‐helix binding. We propose that the bipartite mode of UPF2 binding to UPF1 brings the ribosome and the EJC in close proximity by forming a tight complex after an initial weak encounter with either element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号