首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Collagen mimetic peptides (CMPs) provide critical insight into the assembly, stability, and structure of the triple helical collagen protein. The majority of natural fibrous collagens are aab or abc heterotrimers, yet few examples of heterotrimeric CMPs have been reported. Previously, CMP heterotrimers have only been accessible by total syntheses or by introducing complementary interstrand electrostatic or steric interactions. Here, we describe an abc CMP heterotrimer in which each contributing CMP consists of only three amino acids: glycine, proline and 4-hydroxyproline. Assembly of the heterotrimeric triple helix is directed by a combination of metal-ion coordination to set the relative register of the CMPs, and minimization of valence frustration to direct heterotrimerization. Assembly of the four-component mixture is facile and extremely rapid, and equilibration to the abc heterotrimer occurs within a few hours at modestly elevated temperatures. The melting temperatures of the metal-assembled collagen trimers are higher by some 30°C than the apopeptide assemblies. Two iterations of the design are described, and the outcomes suggest possibilities for designing self-assembling abc and abb heterotrimers.  相似文献   

2.
Parmar AS  Nunes AM  Baum J  Brodsky B 《Biopolymers》2012,97(10):795-806
Type XXV collagen, or collagen‐like amyloidogenic component, is a component of amyloid plaques, and recent studies suggest this collagen affects amyloid fibril elongation and has a genetic association with Alzheimer's disease. The relationship between the collagen triple helix and amyloid fibrils was investigated by studying peptide models, including a very stable triple helical peptide (Pro‐Hyp‐Gly)10, an amyloidogenic peptide GNNQQNY, and a hybrid peptide where the GNNQQNY sequence was incorporated between (GPO)n domains. Circular dichroism and nuclear magnetic resonance (NMR) spectroscopy showed the GNNQQNY peptide formed a random coil structure, whereas the hybrid peptide contained a central disordered GNNQQNY region transitioning to triple‐helical ends. Light scattering confirmed the GNNQQNY peptide had a high propensity to form amyloid fibrils, whereas amyloidogenesis was delayed in the hybrid peptide. NMR data suggested the triple‐helix constraints on the GNNQQNY sequence within the hybrid peptide may disfavor the conformational change necessary for aggregation. Independent addition of a triple‐helical peptide to the GNNQQNY peptide under aggregating conditions delayed nucleation and amyloid fibril growth. The inhibition of amyloid nucleation depended on the Gly‐Xaa‐Yaa sequence and required the triple‐helix conformation. The inhibitory effect of the collagen triple‐helix on an amyloidogenic sequence, when in the same molecule or when added separately, suggests Type XXV collagen, and possibly other collagens, may play a role in regulating amyloid fibril formation. © 2012 Wiley Periodicals, Inc. Biopolymers 97: 795–806, 2012.  相似文献   

3.
Collagen mimetic peptides (CMPs) have been used to elucidate the structure and stability of the triple helical conformation of collagen molecules. Although CMP homotrimers have been widely studied, very little work has been reported regarding CMP heterotrimers because of synthetic difficulties. Here, we present the synthesis and characterization of homotrimers and ABB type heterotrimers comprising natural and synthetic CMP sequences that are covalently tethered to a template, a tris(2‐aminoethyl) amine (TREN) succinic acid derivative. Various tethered heterotrimers comprising synthetic CMPs [(ProHypGly)6, (ProProGly)6] and CMPs representing specific domains of type I collagen were synthesized and characterized in terms of triple helical structure, thermal melting behavior, and refolding kinetics. The results indicated that CMPs derived from natural type I collagen sequence can form stable heterotrimeric helical complexes with artificial CMPs and that the thermal stability and the folding rate increase with the increasing number of helical stabilizing amino acids (e.g. Hyp) in the peptide chains. Covalent tethering enhanced the thermal stability and refolding kinetics of all CMPs; however, their relative values were not affected suggesting that the tethered system can be used for comparative study of heterotrimeric CMP's folding behavior in regards to chain composition and for characterization of thermally unstable CMPs. © 2010 Wiley Periodicals, Inc. Biopolymers 95: 94–104, 2011.  相似文献   

4.
Collagens have long been believed to adopt a triple‐stranded molecular structure with a 10/3 symmetry (ten triplet units in three turns) and an axial repeat of 29 Å. This belief even persisted after an alternative structure with a 7/2 symmetry (seven triplet units in two turns) with an axial repeat of 20 Å had been proposed. The uncertainty regarding the helical symmetry of collagens is attributed to inadequate X‐ray fiber diffraction data. Therefore, for better understanding of the collagen helix, single‐crystal analyses of peptides with simplified characteristic amino acid sequences and similar compositions to collagens have long been awaited. Here we report the crystal structure of (Gly‐Pro‐Hyp)9 peptide at a resolution of 1.45 Å. The repeating unit of this peptide, Gly‐Pro‐Hyp, is the most typical sequence present in collagens, and it has been used as a basic repeating unit in fiber diffraction analyses of collagen. The (Gly‐Pro‐Hyp)9 peptide adopts a triple‐stranded structure with an average helical symmetry close to the ideal 7/2 helical model for collagen. This observation strongly suggests that the average molecular structure of collagen is not the accepted Rich and Crick 10/3 helical model but is a 7/2 helical conformation. © 2012 Wiley Periodicals, Inc. Biopolymers 97: 607–616, 2012.  相似文献   

5.
Clostridium histolyticum collagenase causes extensive degradation of collagen in connective tissue that results in gas gangrene. The C‐terminal collagen‐binding domain (CBD) of these enzymes is the minimal segment required to bind to a collagen fibril. CBD binds unidirectionally to the undertwisted C‐terminus of triple helical collagen. Here, we examine whether CBD could also target undertwisted regions even in the middle of the triple helix. Collageneous peptides with an additional undertwisted region were synthesized by introducing a Gly → Ala substitution [(POG)xPOA(POG)y]3, where x + y = 9 and x > 3). 1H–15N heteronuclear single quantum coherence nuclear magnetic resonance (HSQC NMR) titration studies with 15N‐labeled CBD demonstrated that the minicollagen binds to a 10 Å wide 25 Å long cleft. Six collagenous peptides each labeled with a nitroxide radical were then titrated with 15N‐labeled CBD. CBD binds to either the Gly → Ala substitution site or to the C‐terminus of each minicollagen. Small‐angle X‐ray scattering measurements revealed that CBD prefers to bind the Gly → Ala site to the C‐terminus. The HSQC NMR spectra of 15N‐labeled minicollagen and minicollagen with undertwisted regions were unaffected by the titration of unlabeled CBD. The results imply that CBD binds to the undertwisted region of the minicollagen but does not actively unwind the triple helix.  相似文献   

6.
Collagen, which is used as a biomaterial, is the most abundant protein in mammals. We have previously reported that a dendrimer modified with collagen model peptides, (Gly‐Pro‐Pro)5, formed a collagen‐like triple‐helical structure, showing thermal reversibility. In this study, various collagen‐mimic dendrimers of different generations and at different binding ratios were synthesized, to investigate the relationship between the peptide clustering effect and the higher order structure formation. The formation of the higher order structure was influenced by the binding ratios of the peptide to the dendrimer, but was not influenced by the dendrimer generation. A spacer, placed between the dendrimer terminal group and the peptide, negatively contributed to the formation of the higher order structure. The collagen model peptides were also attached to poly(allylamine) (PAA) and poly‐L ‐lysine (poly(Lys)) to compare them with the collagen‐mimic dendrimers. The PAA‐based collagen‐mimic compound, bearing more collagen model peptides than the dendrimer, exhibited a thermally stable higher order structure. In contrast, this was not observed for the collagen‐mimic polymers based on poly(Lys). Therefore, dendrimers and vinyl polymers act as a scaffold for collagen model peptides and subsequently induce higher order structures. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 640–648, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

7.
The single‐crystal structure of the collagen‐like peptide (Pro‐Pro‐Gly)4‐Hyp‐Asp‐Gly‐(Pro‐Pro‐Gly)4, was analyzed at 1.02 Å resolution. The overall average helical twist (θ = 49.6°) suggests that this peptide adopts a 7/2 triple‐helical structure and that its conformation is very similar to that of (Gly‐Pro‐Hyp)9, which has the typical repeating sequence in collagen. High‐resolution studies on other collagen‐like peptides have shown that imino acid‐rich sequences preferentially adopt a 7/2 triple‐helical structure (θ = 51.4°), whereas imino acid‐lean sequences adopt relaxed conformations (θ < 51.4°). The guest Gly‐Hyp‐Asp sequence in the present peptide, however, has a large helical twist (θ = 61.1°), whereas that of the host Pro‐Pro‐Gly sequence is small (θ = 46.7°), indicating that the relationship between the helical conformation and the amino acid sequence of such peptides is complex. In the present structure, a strong intermolecular hydrogen bond between two Asp residues on the A and B strands might induce the large helical twist of the guest sequence; this is compensated by a reduced helical twist in the host, so that an overall 7/2‐helical symmetry is maintained. The Asp residue in the C strand might interact electrostatically with the N‐terminus of an adjacent molecule, causing axial displacement, reminiscent of the D‐staggered structure in fibrous collagens. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 436–447, 2013.  相似文献   

8.
We have determined the 1.8 Å crystal structure of a triple helical integrin-binding collagen peptide (IBP) with sequence (Gly-Pro-Hyp)2-Gly-Phe-Hyp-Gly-Glu-Arg-(Gly-Pro-Hyp)3. The central GFOGER hexapeptide is recognised specifically by the integrins α2β1, α1β1, α10β1 and α11β1. These integrin/collagen interactions are implicated in a number of key physiological processes including cell adhesion, cell growth and differentiation, and pathological states such as thrombosis and tumour metastasis. Comparison of the IBP structure with the previously determined structure of an identical collagen peptide in complex with the integrin α2-I domain (IBPc) allows the first detailed examination of collagen in a bound and an unbound state. The IBP structure shows a direct and a water-mediated electrostatic interaction between Glu and Arg side-chains from adjacent strands, but no intra-strand interactions. The interactions between IBP Glu and Arg side-chains are disrupted upon integrin binding. A comparison of IBP and IBPc main-chain conformation reveals the flexible nature of the triple helix backbone in the imino-poor GFOGER region. This flexibility could be important to the integrin-collagen interaction and provides a possible explanation for the unique orientation of the three GFOGER strands observed in the integrin-IBPc complex crystal structure.  相似文献   

9.
Researchers have recently questioned the role hydroxylated prolines play in stabilizing the collagen triple helix. To address these issues, we have developed new molecular mechanics parameters for the simulation of peptides containing 4(R)-fluoroproline (Flp), 4(R)-hydroxyproline (Hyp), and 4(R)-aminoproline (Amp). Simulations of peptides based on these parameters can be used to determine the components that stabilize hydroxyproline over proline in the triple helix. The dihedrals F-C-C-N, O-C-C-N, and N-C-C-N were built using a N-beta-ethyl amide model. One nanosecond simulations were performed on the trimers [(Pro-Pro-Gly)(10)](3), [(Pro-Hyp-Gly)(10)](3), [(Pro-Amp-Gly)(10)](3), [(Pro-Amp(1+)-Gly)(10)](3), and [(Pro-Flp-Gly)(10)](3) in explicit solvent. The results of our simulations suggest that pyrrolidine ring conformation is mediated by the strength of the gauche effect and classical electrostatic interactions.  相似文献   

10.
Collagens, characterized by a unique triple-helical structure, are the predominant component of extracellular matrices (ECMs) existing in all multicellular animals. Collagens not only maintain structural integrity of tissues and organs, but also regulate a number of biological events, including cell attachment, migration and differentiation, tissue regeneration and animal development. The specific functions of collagens are generally triggered by specific interactions of collagen-binding molecules (membrane receptors, soluble factors and other ECM components) with certain structures displayed on the collagen triple helices. Thus, synthetic triple-helical peptides that mimic the structure of native collagens have been used to investigate the individual collagen-protein interactions, as well as collagen structure and stability. The first part of this article illustrates the design of various collagen-mimetic peptides and their recent applications in matrix biology. Collagen is also acknowledged as one of the most promising biomaterials in regenerative medicine and tissue engineering. However, the use of animal-derived collagens in human could put the recipients at risks of pathogen transmission or allergic reactions. Hence, the production of safe artificial collagen surrogates is currently of considerable interest. The latter part of this article reviews recent attempts to develop artificial collagens as novel biomaterials.  相似文献   

11.
It has proven challenging to obtain collagen‐mimetic fibrils by protein design. We recently reported the self‐assembly of a mini‐fibril showing a 35 nm, D‐period like, axially repeating structure using the designed triple helix Col108. Peptide Col108 was made by bacterial expression using a synthetic gene; its triple helix domain consists of three pseudo‐identical units of amino acid sequence arranged in tandem. It was postulated that the 35 nm d‐period of Col108 mini‐fibrils originates from the periodicity of the Col108 primary structure. A mutual staggering of one sequence unit of the associating Col108 triple helices can maximize the inter‐helical interactions and produce the observed 35 nm d‐period. Based on this unit‐staggered model, a triple helix consisting of only two sequence units is expected to have the potential to form the same d‐periodic mini‐fibrils. Indeed, when such a peptide, peptide 2U108, was made it was found to self‐assemble into mini‐fibrils having the same d‐period of 35 nm. In contrast, no d‐periodic mini‐fibrils were observed for peptide 1U108, which does not have long‐range repeating sequences in its primary structure. The findings of the periodic mini‐fibrils of Col108 and 2U108 suggest a way forward to create collagen‐mimetic fibrils for biomedical and industrial applications.  相似文献   

12.
The folding of collagen in vitro is very slow and presents difficulties in reaching equilibrium, a feature that may have implications for in vivo collagen function. Peptides serve as good model systems for examining equilibrium thermal transitions in the collagen triple helix. Investigations were carried out to ascertain whether a range of synthetic triple-helical peptides of varying sequences can reach equilibrium, and whether the triple helix to unfolded monomer transition approximates a two-state model. The thermal transitions for all peptides studied are fully reversible given sufficient time. Isothermal experiments were carried out to obtain relaxation times at different temperatures. The slowest relaxation times, on the order of 10-15 h, were observed at the beginning of transitions, and were shown to result from self-association limited by the low concentration of free monomers, rather than cis-trans isomerization. Although the fit of the CD equilibrium transition curves and the concentration dependence of T(m) values support a two-state model, the more rigorous comparison of the calorimetric enthalpy to the van't Hoff enthalpy indicates the two-state approximation is not ideal. Previous reports of melting curves of triple-helical host-guest peptides are shown to be a two-state kinetic transition, rather than an equilibrium transition.  相似文献   

13.
Tsai SW  Liu RL  Hsu FY  Chen CC 《Biopolymers》2006,83(4):381-388
Collagen, a critical part of the extra-cellular matrix of tissues, is a popular native material for building scaffolding for tissue-engineering applications. To mimic the structural and functional profiles of materials found in the native extra-cellular matrix, numerous efforts have been made toward developing a novel scaffold combining collagen with other biomacromolecules. All of these works have been focused on improving the mechanical or biochemical properties of the collagen-based matrix. Unfortunately, most of these studies have failed to consider the nanostructure of collagen in the complex matrix. The aim of our study was to investigate the aggregation pattern of collagen after addition of polysaccharides with positive or negative charge, the dose-response relationship, and the effect on reconstitution kinetics. Generally, collagen self-assembles into fibrils with a diameter of around 95 nm but, in the presence of various polysaccharides in varying amounts, collagen self-assembles into different shapes with larger diameters compared with collagen alone. Although the morphology and diameter of the collagen fibrils varies with reconstitution conditions, the D-periods of the fibrils all remained the same regardless of the species or concentration of polysaccharides. The kinetics of fibril formation was determined from turbidity-time curves. All turbidity curves demonstrated that polysaccharides only alter the lag time and time frame of reconstitution, but have no significant effect on the mechanism of reconstitution. Together our data indicate that the presence of biomacromolecules can alter the kinetics and the 3D fibril ultrastructure of assembled collagen and that the consequent structural changes may affect cellular responses in medical applications.  相似文献   

14.
The triple-helical domains of type IV collagen chains have more than 20 sites at which the repeating (Gly-X-Y)n pattern is interrupted. Analysis of α1 (IV) and α2 (IV) chains indicates the residues in the three Gly-X-Y triplets preceding or following interruptions differ statistically from the rest of the chain. Unusually high frequencies of charged residues are seen at a number of X and Y sites, with the charge density being particularly high C-terminal to the interruption site. Analyses were carried out on individual categories of interruptions, classified as insertions or deletions in the Y position. All of the residues in the X and Y positions of the triplets flanking insertion sites are atypical, with a high concentration of charged residues. Triplets flanking sites where there has been a deletion in the Y position show unusually high frequencies of charged residues at some sites, hydrophobic residues at other sites, and an invariant imino acid N-terminal to the interruption. The presence of atypical sequences surrounding interruptions could be important at a molecular level, related to triple-helix stability, or at a supramolecular level, related to the association of molecules to form networks in basement membranes. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
The relationship between primary sequence and collagen triple-helix formation is relatively well characterized, while higher levels of structural assembly from these sequences is poorly understood. To address this gap, a new collagen-like triblock peptide design was used to study the relationship between amino acid sequence and supramolecular assembly. Four collagen-like peptides with the sequence (Glu)(5)(Gly-Xaa-Hyp-Gly-Pro-Hyp)(6)(Glu)(5) and corresponding to Xaa = alanine, proline, serine, or valine, and an analogous peptide without the glutamic acid end blocks, were solubilized in water at high concentrations (20-150 mg/mL) and analyzed in optical polarizing microscopy and transmission electron microscopy. Some of the peptides self-assembled into supramolecular structures, the nature of which was determined by the core collagen-like sequence. The globular end blocks appeared necessary for these short triple-helix-forming peptides to spontaneously organize into supramolecular structures in solution and also provided enhanced thermal stability based on CD analysis. The results indicate a strong dependence of the peptide triblock assembly behavior on the identity of the guest residue Xaa; nematic order when Xaa was valine, no organization when Xaa was serine, and banded spherulites displaying a cholesteric-like twist when Xaa was proline or alanine. According to these results, the identity of the amino acid in position Xaa of the triplet Gly-Xaa-Yaa dramatically determined the type of supramolecular assembly formed by short triple helices based on collagen-triblock like sequences. Moreover, the structural organization observed for these collagen-triblock peptides was analogous to some assemblies observed for native collagen in vivo and in vitro. The amino acid sequence in the native collagen proteins may therefore be a direct determinant of the different supramolecular architectures found in connective tissues.  相似文献   

16.
Handgraaf JW  Zerbetto F 《Proteins》2006,64(3):711-718
The onset of water gelation around a collagen-like triple helix peptide was studied at ambient temperature and pressure by performing Molecular Dynamics simulations. The radial distribution functions of the oxygen and hydrogen atoms of water are distorted below 4 A from the peptide. The distortion is accompanied by the breakdown of the tetrahedral coordination of the hydrogen-bonded network of water molecules. The water shell around the peptide consists of alternating regions of higher and lower density. In agreement with experiments we find that the first hydration shell is kinetically labile, with a residence time in the order of picoseconds for a water molecule. From the computed diffusion coefficient, a key measure of the collective dynamics, we estimate the average diffusion speed decreases by a factor of 1.5 close to the peptide compared to the liquid. Our results give new insight in gel formation and structure on a molecular level.  相似文献   

17.
Prasad KK  Verma S 《Biopolymers》2006,83(3):289-296
Glycine residues play an intriguing role in peptide/protein structure where they can act as tightly packing amino acids with flexible bond angles. For example, structural role of glycines is highlighted in natural silk fibers where different structural polymorphs have been reported. This study deals with a glycine-rich segment from the conserved octarepeat (PHGGGWGQ) in prion protein. We have synthesized a bis-conjugate 3, containing a truncated pentapeptide segment (GGGWG), to study its time-dependent solution phase aggregation by a combination of microscopic methods and fluorescence. This discontinuous peptide conjugate 3 exhibited interesting photophysical properties upon self-assembly allowing us to propose a possible model of peptide filament formation. Taking note of the fact that prion octarepeats bind copper, we also demonstrate the ability of this conjugate to bind copper and the growth and ultrastructure of metallized fibers formed upon incubation. Enforcing peptide fiber formation in metal binding motifs offers an entry into metal impregnated fibers for possible nanobiotechnological applications.  相似文献   

18.
本研究建立了一种测定胶原蛋白的三股螺旋结构含量的方法。该方法通过使用柱前衍生高效液相色谱(HPLC)法表征经胰蛋白酶酶解后胶原蛋白羟脯氨酸(Hyp)质量浓度的变化,进而对胶原蛋白的三股螺旋结构进行定量。探讨了不同的酶解时间(0~48h)、酶与底物的比例(1∶100、1∶50和1∶20)和温度(20、25、30、37℃)对明胶降解率的影响。获得了酶解的最佳条件——当胰蛋白酶与底物的比例为1∶50时,25℃酶解3h。使用该方法对明胶胶原蛋白混合液检测,结果表明,该方法能灵敏(RSD<10%)的测定胶原蛋白三股螺旋结构的含量。该方法不仅可用于生物组织研究领域,也可用于胶原蛋白食品、保健品和组织工程产品质量的评价。  相似文献   

19.
The crystal structure of the host-guest peptide, (Pro-Pro-Gly)4-(Pro-alloHyp-Gly)-(Pro-Pro-Gly)4, was analyzed at high resolution. allohydroxyproline (alloHyp), 4S-hydroxyproline, was successfully characterized through the use of a host-guest peptide, while the previous study indicated the inability of a triple helical formation of (Pro-alloHyp-Gly)10. A detailed analysis of alloHyp conformation in collagen-like models sheds light on the role played by its puckering in the triple-helix stabilization and destabilization. That is, the alloHyp typically adopts down puckering. However, it adopted up puckering in the Y position in the Pro-alloHyp-Gly guest triplet, which was not preferable conformation for alloHyp. Therefore, the energetically unfavorable conformations seemed to play the key role in giving destabilization to the triple helix in (Pro-alloHyp-Gly)10. The intrinsic hydration pattern in (Pro-Pro-Gly)9 was conserved even in the surrounding alloHyp residues.  相似文献   

20.
We report a rapid method to synthesize cystine cross-linked heterotrimeric collagenous peptides. They can be engineered to favour one particular axial alignment of the strands, called the register of the helix. Here, the sequence of the constituent peptides contains 18 residues of "guest" collagen type I sequence flanked by N and C-terminal (Gly-Pro-Pro)5 "host" modules which ensure helicity. Further C-terminal residues include appropriately spaced cysteine residues and alanine to provide the necessary flexibility for helix formation. The cross-linking reaction and subsequent separation protocols have been designed for any inserted collagen sequence that does not contain a cysteine residue. Mass spectrometry and ion-exchange chromatography allow us to distinguish between different disulphide-bonded species and to monitor the formation of side-products. Starting peptide can be recovered simply from the reaction mixture by reduction and separation. Yields are typically 30%, working on a 10 mg scale. 15N-1H NMR and platelet adhesion studies show that the peptide heterotrimers presented here can reshuffle to cover all three axial registers. Less flexible spacers between the disulphide linkages and the helix will restrict each heterotrimer to one register only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号