首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have cloned cDNAs encoding two variants of the elongation factor for protein synthesis in Xenopus laevis, called EF-1 alpha. One of these (42Sp50) is expressed exclusively in immature oocytes. It is one of two protein components of a 42S RNP particle that is very abundant in previtellogenic oocytes. The 42S RNP particle consists of various tRNAs, 5S RNA, 42Sp50 and a 5S RNA binding protein (42Sp43). A major function served by 42Sp50 appears to be the storage of tRNAs for later use in oogenesis and early embryogenesis. The second EF-1 alpha variant (EF-1 alpha O) is expressed mainly in oocytes but transiently in early embryogenesis as well. Its mRNA cannot be detected after neurulation in somatic cells. EF-1 alpha O is closely related to a third EF-1 alpha (EF-1 alpha S), discovered originally by Krieg et al. (1). EF-1 alpha S is expressed at low levels in oocytes but actively in somatic cells. The latter two proteins are very similar to known eukaryotic EF-1 alpha from other organisms and presumably function in their respective cell types to support protein synthesis.  相似文献   

3.
During early oogenesis in amphibia, most of the 5 S RNA and tRNA is stored in a ribonucleoprotein particle that sediments at 42 S. In Xenopus laevis the 42 S particle contains two major proteins: of Mr 48 000 (P48) and 43 000 (P43). It is shown that heterogeneity in composition of the 42 S particle reflects a changing situation whereby initially, both 5 S RNA and tRNA are complexed with P48 (1 molecule 5 S RNA: 1 molecule P48; 2 or 3 molecules tRNA: 1 molecule P48), but later, tRNA becomes increasingly associated with P43 (in a 1:1 ratio) although 5 S RNA remains complexed with a cleavage product of P48. These changes relate to the eventual utilization of the excess 5 S RNA and tRNA in ribosome assembly and protein synthesis.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
Prp43p is a RNA helicase required for pre‐mRNA splicing and for the synthesis of large and small ribosomal subunits. The molecular functions and modes of regulation of Prp43p during ribosome biogenesis remain unknown. We demonstrate that the G‐patch protein Pfa1p, a component of pre‐40S pre‐ribosomal particles, directly interacts with Prp43p. We also show that lack of Gno1p, another G‐patch protein associated with Prp43p, specifically reduces Pfa1p accumulation, whereas it increases the levels of the pre‐40S pre‐ribosomal particle component Ltv1p. Moreover, cells lacking Pfa1p and depleted for Ltv1p show strong 20S pre‐rRNA accumulation in the cytoplasm and reduced levels of 18S rRNA. Finally, we demonstrate that Pfa1p stimulates the ATPase and helicase activities of Prp43p. Truncated Pfa1p variants unable to fully stimulate the activity of Prp43p fail to complement the 20S pre‐rRNA processing defect of Δpfa1 cells depleted for Ltv1p. Our results strongly suggest that stimulation of ATPase/helicase activities of Prp43p by Pfa1p is required for efficient 20S pre‐rRNA‐to‐18S rRNA conversion.  相似文献   

12.
The plant viral re‐initiation factor transactivator viroplasmin (TAV) activates translation of polycistronic mRNA by a re‐initiation mechanism involving translation initiation factor 3 (eIF3) and the 60S ribosomal subunit (60S). QJ;Here, we report a new plant factor—re‐initiation supporting protein (RISP)—that enhances TAV function in re‐initiation. RISP interacts physically with TAV in vitro and in vivo. Mutants defective in interaction are less active, or inactive, in transactivation and viral amplification. RISP alone can serve as a scaffold protein, which is able to interact with eIF3 subunits a/c and 60S, apparently through the C‐terminus of ribosomal protein L24. RISP pre‐bound to eIF3 binds 40S, suggesting that RISP enters the translational machinery at the 43S formation step. RISP, TAV and 60S co‐localize in epidermal cells of infected plants, and eIF3–TAV–RISP–L24 complex formation can be shown in vitro. These results suggest that RISP and TAV bridge interactions between eIF3‐bound 40S and L24 of 60S after translation termination to ensure 60S recruitment during repetitive initiation events on polycistronic mRNA; RISP can thus be considered as a new component of the cell translation machinery.  相似文献   

13.
14.
15.
Background information. The F‐BAR {Fes/CIP4 [Cdc42 (cell division cycle 42)‐interacting protein 4] homology and BAR (Bin/amphiphysin/Rvs)} proteins have emerged as important co‐ordinators of signalling pathways that regulate actin assembly and membrane dynamics. The presence of the F‐BAR domain is the hallmark of this family of proteins and the CIP4 (Cdc42‐interacting protein 4) was one of the first identified vertebrate F‐BAR proteins. There are three human CIP4 paralogues, namely CIP4, FBP17 (formin‐binding protein 17) and Toca‐1 (transducer of Cdc42‐dependent actin assembly 1). The CIP4‐like proteins have been implicated in Cdc42‐dependent actin reorganization and in regulation of membrane deformation events visible as tubulation of lipid bilayers. Results. We performed side‐by‐side analyses of the three CIP4 paralogues. We found that the three CIP4‐like proteins vary in their effectiveness to catalyse membrane tubulation and actin reorganization. Moreover, we show that the CIP4‐dependent membrane tubulation is enhanced in the presence of activated Cdc42. Some F‐BAR members have been shown to have a role in the endocytosis of the EGF (epidermal growth factor) receptor and this prompted us to study the involvement of the CIP4‐like proteins in signalling of the PDGFRβ [PDGF (platelet‐derived growth factor) β‐receptor]. We found that knock‐down of CIP4‐like proteins resulted in a prolonged formation of PDGF‐induced dorsal ruffles, as well as an increased PDGF‐dependent cell migration. This was most likely a consequence of a sustained PDGFRβ activation caused by delayed internalization of the receptor in the cells treated with siRNA (small interfering RNA) specific for the CIP4‐like proteins. Conclusions. Our findings show that CIP4‐like proteins induced membrane tubulation downstream of Cdc42 and that they have important roles in PDGF‐dependent actin reorganization and cell migration by regulating internalization and activity of the PDGFRβ. Moreover, the results suggest an important role for the CIP4‐like proteins in the regulation of the activity of the PDGFRβ.  相似文献   

16.
17.
18.
19.
Mammalian α4 phosphoprotein, the homolog of yeast Tap42, is a component of the mammalian target‐of‐rapamycin (mTOR) pathway that regulates ribogenesis, the initiation of translation, and cell‐cycle progression. α4 is known to interact with the catalytic subunit of protein phosphatase 2A (PP2Ac) and to regulate PP2A activity. Using α4 as bait in yeast two‐hybrid screening of a human K562 erythroleukemia cDNA library, EDD (E3 isolated by differential display) E3 ubiquitin ligase was identified as a new protein partner of α4. EDD is the mammalian ortholog of Drosophila hyperplastic discs gene (hyd) that controls cell proliferation during development. The EDD protein contains a PABC domain that is present in poly(A)‐binding protein (PABP), suggesting that PABP may also interact with α4. PABP recruits translation factors to the poly(A)‐tails of mRNAs. In the present study, immunoprecipitation/immunoblotting (IP/IB) analyses showed a physical interaction between α4 and EDD in rat Nb2 T‐lymphoma and human MCF‐7 breast cancer cell lines. α4 also interacted with PABP in Nb2, MCF‐7 and the human Jurkat T‐leukemic and K562 myeloma cell lines. COS‐1 cells, transfected with Flag‐tagged‐pSG5‐EDD, gave a (Flag)‐EDD–α4 immunocomplex. Furthermore, deletion mutants of α4 were constructed to determine the binding site for EDD. IP/IB analysis showed that EDD bound to the C‐terminal region of α4, independent of the α4‐PP2Ac binding site. Therefore, in addition to PP2Ac, α4 interacts with EDD and PABP, suggesting its involvement in multiple steps in the mTOR pathway that leads to translation initiation and cell‐cycle progression. J. Cell. Biochem. 110: 1123–1129, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

20.
S100A11 protein is a member of the S100 family containing two EF‐hand motifs. It undergoes phophorylation on residue T10 after cell stimulation such as an increase in Ca2+ concentration. Phosphorylated S100A11 can be recognized by its target protein, nucleolin. Although S100A11 is initially expressed in the cytoplasm, it is transported to the nucleus by the action of nucleolin. In the nucleus, S100A11 suppresses the growth of keratinocytes through p21CIP1/WAF1 activation and induces cell differentiation. Interestingly, the N‐terminal fragment of S100A11 has the same activity as the full‐length protein; i.e. it is phosphorylated in vivo and binds to nucleolin. In addition, this fragment leads to the arrest of cultured keratinocyte growth. We examined the solution structure of this fragment peptide and explored its structural properties before and after phosphorylation. In a trifluoroethanol solution, the peptide adopts the α‐helical structure just as the corresponding region of the full‐length S100A11. Phosphorylation induces a disruption of the N‐capping conformation of the α‐helix, and has a tendency to perturb its surrounding structure. Therefore, the phosphorylated threonine lies in the N‐terminal edge of the α‐helix. This local structural change can reasonably explain why the phosphorylation of a residue that is initially buried in the interior of protein allows it to be recognized by the binding partner. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号