首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 511 毫秒
1.
Obesity can be considered as a low‐grade inflammatory condition, strongly linked to adverse metabolic outcomes. Obesity‐associated adipose tissue inflammation is characterized by infiltration of macrophages and increased cytokine and chemokine production. The distribution of adipose tissue impacts the outcomes of obesity, with the accumulation of fat in visceral adipose tissue (VAT) and deep subcutaneous adipose tissue (SAT), but not superficial SAT, being linked to insulin resistance. We hypothesized that the inflammatory gene expression in deep SAT and VAT is higher than in superficial SAT. A total of 17 apparently healthy women (BMI: 29.3±5.5 kg/m2) were included in the study. Body fat (dual‐energy X‐ray absorptiometry) and distribution (computed tomography) were measured, and insulin sensitivity, blood lipids, and blood pressure were determined. Inflammation‐related differences in gene expression (real‐time PCR) from VAT, superficial and deep SAT biopsies were analyzed using univariate and multivariate data analyses. Using multivariate discrimination analysis, VAT appeared as a distinct depot in adipose tissue inflammation, while the SAT depots had a similar pattern, with respect to gene expression. A significantly elevated (P < 0.01) expression of the CC chemokine receptor 2 (CCR2) and macrophage migration inhibitory factor (MIF) in VAT contributed strongly to the discrimination. In conclusion, the human adipose tissue depots have unique inflammatory patterns, with CCR2 and MIF distinguishing between VAT and the SAT depots.  相似文献   

2.
Adipose tissue contains a heterogeneous population of mature adipocytes, endothelial cells, immune cells, pericytes, and preadipocytic stromal/stem cells. To date, a majority of proteomic analyses have focused on intact adipose tissue or isolated adipose stromal/stem cells in vitro. In this study, human subcutaneous adipose tissue from multiple depots (arm and abdomen) obtained from female donors was separated into populations of stromal vascular fraction cells and mature adipocytes. Out of 960 features detected by 2-D gel electrophoresis, a total of 200 features displayed a 2-fold up- or down-regulation relative to each cell population. The protein identity of 136 features was determined. Immunoblot analyses comparing SVF relative to adipocytes confirmed that carbonic anhydrase II was up-regulated in both adipose depots while catalase was up-regulated in the arm only. Bioinformatic analyses of the data set determined that cytoskeletal, glycogenic, glycolytic, lipid metabolic, and oxidative stress related pathways were highly represented as differentially regulated between the mature adipocytes and stromal vascular fraction cells. These findings extend previous reports in the literature with respect to the adipose tissue proteome and the consequences of adipogenesis. The proteins identified may have value as biomarkers for monitoring the physiology and pathology of cell populations within subcutaneous adipose depots.  相似文献   

3.
Objective: Abdominal subcutaneous adipose tissue (SAT) occurs in two depots separated by a fascial plane: deep SAT and superficial SAT. In a recent study it was demonstrated that the amount of deep SAT has a much stronger relationship to insulin resistance than does superficial SAT. Because insulin resistance may be related to fatty acid release from adipose tissue, we hypothesized that the two SAT depots may have a different lipolytic activity. Research Methods and Procedures: To test this hypothesis, we obtained samples of deep and superficial SAT from patients undergoing elective abdominal surgery. The rate of lipolysis was determined in the collagenase‐digested adipocytes obtained from the two fat depots by measuring glycerol release in the presence and absence of isoproterenol. In addition, the relative concentration of hormone‐sensitive lipase was determined in both SAT depots by Western blot analysis. Results: Our results showed that the rate of isoproterenol‐stimulated lipolysis was ~20% higher in cells from deep SAT compared with those from superficial SAT, indicating that the deep SAT is more lipolytically active. The concentration of hormone‐sensitive lipase did not differ between the two adipose tissue depots. Discussion: These findings suggest that the higher lipolytic activity of deep SAT may account for its stronger association with insulin resistance. The mechanism seems to be independent of differences in hormone‐sensitive lipase concentration.  相似文献   

4.
The original concept of adipose tissue as an inert storage depot for the excess of energy has evolved over the last years and it is now considered as one of the most important organs regulating body homeostasis. This conceptual change has been supported by the demonstration that adipose tissue serves as a major endocrine organ, producing a wide variety of bioactive molecules, collectively termed adipokines, with endocrine, paracrine and autocrine activities. Adipose tissue is indeed a complex organ wherein mature adipocytes coexist with the various cell types comprising the stromal-vascular fraction (SVF), including preadipocytes, adipose-derived stem cells, perivascular cells, and blood cells. It is known that not only mature adipocytes but also the components of SVF produce adipokines. Furthermore, adipokine production, proliferative and metabolic activities and response to regulatory signals (i.e. insulin, catecholamines) differ between the different fat depots, which have been proposed to underlie their distinct association to specific diseases. Herein, we discuss the recent proteomic studies on adipose tissue focused on the analysis of the separate cellular components and their secretory products, with the aim of identifying the basic features and the contribution of each component to different adipose tissue-associated pathologies.  相似文献   

5.
Metabolic pathologies mainly originate from adipose tissue (AT) dysfunctions. AT differences are associated with fat-depot anatomic distribution in subcutaneous (SAT) and visceral omental (VAT) pads. We address the question whether the functional differences between the two compartments may be present early in the adipose stem cell (ASC) instead of being restricted to the mature adipocytes. Using a specific human ASC model, we evaluated proliferation/differentiation of ASC from abdominal SAT-(S-ASC) and VAT-(V-ASC) paired biopsies in parallel as well as the electrophysiological properties and functional activity of ASC and their in vitro-derived adipocytes. A dramatic difference in proliferation and adipogenic potential was observed between the two ASC populations, S-ASC having a growth rate and adipogenic potential significantly higher than V-ASC and giving rise to more functional and better organized adipocytes. To our knowledge, this is the first comprehensive electrophysiological analysis of ASC and derived-adipocytes, showing electrophysiological properties, such as membrane potential, capacitance and K(+)-current parameters which confirm the better functionality of S-ASC and their derived adipocytes. We document the greater ability of S-ASC-derived adipocytes to secrete adiponectin and their reduced susceptibility to lipolysis. These features may account for the metabolic differences observed between the SAT and VAT. Our findings suggest that VAT and SAT functional differences originate at the level of the adult ASC which maintains a memory of its fat pad of origin. Such stem cell differences may account for differential adipose depot susceptibility to the development of metabolic dysfunction and may represent a suitable target for specific therapeutic approaches.  相似文献   

6.
Different adipose tissue (AT) depots are associated with multiple metabolic risks. Phosphodiesterase type 5 (PDE5) is involved in adipocyte physiology and PDE5 inhibition may affect adipogenesis and ameliorate white AT quality. The aim of this study is to investigate the distribution of AT and the composition of the stroma‐vascular fraction (SVF) of subcutaneous AT (SAT) in type 2 diabetic mice after prolonged treatment with a PDE5 inhibitor, Sildenafil. 18 db/db mice were treated with Sildenafil or vehicle for 12 weeks. AT distribution was monitored and SAT was processed for isolation of SVF by flow cytometry. Sildenafil induced an overall reduction in AT, mainly in visceral AT (VAT), compared with SAT. In Sildenafil‐treated mice, the mean change in body weight from baseline positively correlated with VAT, but not with SAT. Characterization of SVF of SAT showed an increase in the frequency of M2 macrophages and endothelial cells in treated mice. Sildenafil improved the maintenance of SAT homeostasis and distribution.  相似文献   

7.
Glyceroneogenesis, a metabolic pathway that participates during lipolysis in the recycling of free fatty acids to triglycerides into adipocytes, contributes to the lipid-buffering function of adipose tissue. We investigated whether glyceroneogenesis could be affected by human immunodeficiency virus (HIV) protease inhibitors (PIs) responsible or not for dyslipidemia in HIV-infected patients. We treated explants obtained from subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) depots from lean individuals. We observed that the dyslipidemic PIs nelfinavir, lopinavir and ritonavir, but not the lipid-neutral PI atazanavir, increased lipolysis and decreased glyceroneogenesis, leading to an increased release of fatty acids from SAT but not from VAT. At the same time, dyslipidemic PIs decreased the amount of perilipin and increased interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) secretion in SAT but not in VAT. Parthenolide, an inhibitor of the NFκB pathway, counteracted PI-induced increased inflammation and decreased glyceroneogenesis. IL-6 (100 ng) inhibited the activity of phosphoenolpyruvate carboxykinase, the key enzyme of glyceroneogenesis, in SAT but not in VAT. Our data show that dyslipidemic but not lipid-neutral PIs decreased glyceroneogenesis as a consequence of PI-induced increased inflammation in SAT that could have an affect on adipocytes and/or macrophages. These results add a new link between fat inflammation and increased fatty acids release and suggest a greater sensitivity of SAT than VAT to PI-induced inflammation.  相似文献   

8.
Objective: This study investigated ethnic and sex differences in the distribution of fat during childhood and adolescence. Design and Methods : A cross‐sectional sample (n = 382), aged 5–18 years, included African American males (n = 84), White males (n = 96), African American females (n = 118), and White females (n = 84). Measures for total body fat (TBF) mass and abdominal adipose tissue (total volume and L4‐L5 cross‐sectional area) for both subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) depots were assessed by dual‐energy X‐ray absorptiometry and magnetic resonance image, respectively. Analyses of covariance (ANCOVAs) were used to determine ethnic and sex differences in TBF (adjusted for age) and ethnic and sex differences in SAT and VAT (adjusted for both age and TBF). Results: Age‐adjusted TBF was greater in African Americans (P = 0.017) and females (P < 0.0001) compared with Whites and males, respectively. In age‐ and TBF‐adjusted ANCOVAs, no differences were found in the SAT. The VAT volume was, however, greater in Whites (P < 0.0001) and males (P < 0.0001) compared with African Americans and females, respectively. Similar patterns were observed in SAT and VAT area at L4‐L5. Conclusions: The demonstrated ethnic and sex differences are important confounders in the prevalence of obesity and in the assignment of disease risk in children and adolescents.  相似文献   

9.
《遗传学报》2022,49(4):308-315
White adipose tissue (WAT) is a highly plastic organ that plays a central role in regulating whole-body energy metabolism. Adipose stem and progenitor cells (ASPCs) are essential components of the stromal vascular fraction (SVF) of adipose tissue. They give rise to mature adipocytes and play a critical role in maintaining adipose tissue function. However, the molecular heterogeneity and functional diversity of ASPCs are still poorly understood. Recently, single-cell RNA sequencing (scRNA-seq) analysis has identified distinct subtypes of ASPCs in murine and human adipose tissues, providing new insights into the cellular complexity of ASPCs among multiple fat depots. This review summarizes the current knowledge on ASPC populations, including their markers, functions, and regulatory mechanisms. Targeting one or several of these cell populations may ameliorate metabolic disorders by promoting adaptive hyperplastic adipose growth.  相似文献   

10.
Objective: Both ethnicity and menopause appear to influence intra‐abdominal fat distribution. This study evaluated intra‐abdominal fat distribution and obesity‐related health risks in perimenopausal white and African American women. Research Methods and Procedures: Baseline data from a longitudinal study of changes in body composition and energy balance during menopause are reported. Healthy women (55 African Americans and 103 whites) who were on no medication and had at least five menstrual cycles in the previous 6 months were recruited. Body composition was assessed by DXA, and visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) were assessed by computed tomography scan. SAT was divided into deep and superficial layers demarcated by the fascia superficialis. Results: African American women were slightly younger (46.7 ± 0.2 vs. 47.7 ± 0.2 years, p = 0.002) and fatter (42.4% ± 1.0% vs. 39.4% ± 0.8% body fat, p = 0.02) than white women. In unadjusted data, African Americans had significantly more total abdominal fat and total, deep, and superficial SAT than whites. After adjustment for percent body fat and age, only total and superficial SAT remained significantly higher in African Americans. VAT although slightly less in African American women, did not differ significantly by race. In multiple regression analysis, VAT was the strongest predictor of serum lipids, glucose, and insulin in women of both races, although superficial SAT was significantly associated with fasting glucose in whites. Conclusions: Middle‐aged African American women have larger SAT depots, adjusted for total body fatness, but do not differ from white women with regard to VAT. The complexity of the relationship between abdominal fat and metabolic risk is increased by ethnic differences in such associations.  相似文献   

11.
Whereas truncal (central) adiposity is strongly associated with the insulin resistant metabolic syndrome, it is uncertain whether this is accounted for principally by visceral adiposity (VAT). Several recent studies find as strong or stronger association between subcutaneous abdominal adiposity (SAT) and insulin resistance. To reexamine the issue of truncal adipose tissue depots, we performed cross-sectional abdominal computed tomography, and we undertook the novel approach of partitioning SAT into the plane superficial to the fascia within subcutaneous adipose tissue (superficial SAT) and that below this fascia (deep SAT), as well as measurement of VAT. Among 47 lean and obese glucose-tolerant men and women, insulin-stimulated glucose utilization, measured by euglycemic clamp, was strongly correlated with both VAT and deep SAT (r = -0.61 and -0.64, respectively; both P < 0.001), but not with superficial SAT (r = -0.29, not significant). Also, VAT and deep SAT followed a highly congruent pattern of associations with glucose and insulin area under the curve (75-g oral glucose tolerance test), mean arterial blood pressure, apoprotein-B, high-density lipoprotein cholesterol, and triglyceride. Superficial SAT had markedly weaker association with all these parameters and instead followed the pattern observed for thigh subcutaneous adiposity. We conclude that there are two functionally distinct compartments of adipose tissue within abdominal subcutaneous fat and that the deep SAT has a strong relation to insulin resistance.  相似文献   

12.
Objective: To test a newly developed dual energy X‐ray absorptiometry (DXA) method for abdominal fat depot quantification in subjects with anorexia nervosa (AN), normal weight, and obesity using CT as a gold standard. Design and Methods: 135 premenopausal women (overweight/obese: n = 89, normal‐weight: n = 27, AN: n = 19); abdominal visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and total adipose tissue (TAT) areas determined on CT and DXA. Results: There were strong correlations between DXA and CT measurements of abdominal fat compartments in all groups with the strongest correlation coefficients in the normal‐weight and overweight/obese groups. Correlations of DXA and CT VAT measurements were strongest in the obese group and weakest in the AN group. DXA abdominal fat depots were higher in all groups compared to CT, with the largest % mean difference in the AN group and smallest in the obese group. Conclusion: A new DXA technique is able to assess abdominal fat compartments including VAT in premenopausal women across a large weight spectrum. However, DXA measurements of abdominal fat were higher than CT, and this percent bias was most pronounced in the AN subjects and decreased with increasing weight, suggesting that this technique may be more useful in obese individuals.  相似文献   

13.
14.
Abdominal visceral tissue (VAT) and subcutaneous adipose tissue (SAT), comprised of superficial‐SAT (sSAT) and deep‐SAT (dSAT), are metabolically distinct. The antidiabetic agents thiazolidinediones (TZDs), in addition to their insulin‐sensitizing effects, redistribute SAT suggesting that TZD action involves adipose tissue depot‐specific regulation. We investigated the expression of proteins key to adipocyte metabolism on differentiated first passage (P1) preadipocytes treated with rosiglitazone, to establish a role for the diverse depots of abdominal adipose tissue in the insulin‐sensitizing effects of TZDs. Adipocytes and preadipocytes were isolated from sSAT, dSAT, and VAT samples obtained from eight normal subjects. Preadipocytes (P1) left untreated (U) or treated with a classic differentiation cocktail (DI) including rosiglitazone (DIR) for 9 days were evaluated for strata‐specific differences in differentiation including peroxisome proliferator‐activated receptor‐γ (PPAR‐γ) and lipoprotein lipase (LPL) expression, insulin sensitivity via adiponectin and glucose transport‐4 (GLUT4), glucocorticoid metabolism with 11β‐hydroxysteroid dehydrogenase type‐1 (11βHSD1), and alterations in the adipokine leptin. While depot‐specific differences were absent with the classic differentiation cocktail, with rosiglitazone sSAT had the most potent response followed by dSAT, whereas VAT was resistant to differentiation. With rosiglitazone, universal strata effects were observed for PPAR‐γ, LPL, and leptin, with VAT in all cases expressing significantly lower basal expression levels. Clear dSAT‐specific changes were observed with decreased intracellular GLUT4. Specific sSAT alterations included decreased 11βHSD1 whereas secreted adiponectin was potently upregulated in sSAT with respect to dSAT and VAT. Overall, the subcompartments of SAT, sSAT, and dSAT, appear to participate in the metabolic changes that arise with rosiglitazone administration.  相似文献   

15.
Objective : Circulating and adipose tissue markers of iron overload are increased in subjects with obesity. The aim is to study iron signals in adipose tissue. Methods: Adipose tissue R2* values and hepatic iron concentration (HIC) were evaluated using magnetic resonance imaging (MRI) in 23 middle‐aged subjects with obesity and 20 subjects without obesity. Results: Subcutaneous (SAT) and visceral adipose tissue (VAT) R2* were increased in subjects with obesity (P = 0.004 and P = 0.008) and correlated significantly and positively with HIC in all subjects. Strikingly, most of the associations of liver iron with metabolic parameters were replicated with SAT and VAT R2*. BMI, waist circumference, fat mass, HOMA value, and C‐reactive protein positively correlated with HIC and SAT and VAT R2*. BMI or percent fat mass (but not insulin resistance) contributed independently to 26.8‐34.8% of the variance in sex‐ and age‐adjusted SAT or VAT R2* (β > 0.40, P < 0.005). Within subjects with obesity, total cholesterol independently contributed to 14.8% of sex‐ and age‐adjusted VAT iron variance (β = 0.50, P = 0.025). Conclusions: Increased R2* in adipose tissue, which might indicate iron content, runs in parallel to liver iron stores of subjects with obesity. VAT iron seems also associated with serum cholesterol within subjects with obesity.  相似文献   

16.
Objective: Abdominal visceral (VAT) and subcutaneous adipose tissue (SAT) display significant metabolic differences, with VAT showing a functional association to metabolic/cardiovascular disorders. A third abdominal adipose layer, derived by the division of SAT and identified as deep subcutaneous adipose tissue (dSAT), may play a significant and independent metabolic role. The aim of this study was to evaluate depot‐specific differences in the expression of proteins key to adipocyte metabolism in a lean population to establish a potential physiologic role for dSAT. Research Methods and Procedures: Adipocytes and preadipocytes were isolated from whole biopsies taken from superficial SAT (sSAT), dSAT, and VAT samples obtained from 10 healthy normal weight patients (7 women and 3 men), with a mean age of 56.4 ± 4.04 years and a mean BMI of 23.1 ± 0.5 kg/m2. Samples were evaluated for depot‐specific differences in insulin sensitivity using adiponectin, glucose transport protein 4 (GLUT4), and resistin mRNA and protein expression, glucocorticoid metabolism by 11β‐hydroxysteroid dehydrogenase type‐1 (11β‐HSD1) expression, and alterations in the adipokines leptin and tumor necrosis factor‐α (TNF‐α). Results: Although no regional differences in expression were observed for adiponectin or TNF‐α, dSAT whole biopsies and adipocytes, while intermediary to both sSAT and VAT, reflected more of the VAT expression profile of 11β‐HSD1, leptin, and resistin. Only in the case of the intracellular pool of GLUT4 proteins in whole biopsies was an independent pattern of expression observed for dSAT. In an evaluation of the homeostatic model, dSAT 11β‐HSD1 protein (r = 0.9573, p = 0.0002) and TNF‐α mRNA (r = 0.8210, p = 0.0236) correlated positively to the homeostatic model. Discussion: Overall, dSAT seems to be a distinct abdominal adipose depot supporting an independent metabolic function that may have a potential role in the development of obesity‐associated complications.  相似文献   

17.
18.

Objective:

We and others have shown relationships between circulating levels of persistent organic pollutants (POPs) and different measures of obesity in both cross‐sectional and prospective studies. Since viscerally located fat seems to be the most harmful type, we investigated whether plasma POP levels were more closely related to visceral adipose tissue (VAT) than to subcutaneous adipose tissue (SAT).

Design and Methods:

Thousand hundred and sixteen subjects aged 70 years were investigated in the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study; 23 POPs were analyzed using high‐resolution gas chromatography/high‐resolution mass spectrometry. Abdominal magnetic resonance imaging, measuring VAT and SAT, respectively, was performed in a representative subsample of 287 subjects.

Results:

The less chlorinated polychlorinated biphenyl (PCB) congeners (105 and 118), and the pesticides dichlorodiphenyldichloroethylene (DDE), hexachlorobenzene (HCB), and trans‐nonachlordane (TNC) were positively related to both VAT and SAT, whereas the more highly chlorinated PCBs (153, 156, 157, 169, 170, 180, 194, 206, and 209) were inversely related to both VAT and SAT. PCB189 was related to the VAT/SAT ratio in an inverted U‐shaped manner (P = 0.0008).

Conclusions:

In conclusion, the results were in accordance with our previous studies using waist circumference and fat mass as obesity measure. However, the novel finding that PCB189 was related to the VAT/SAT ratio deserves further investigation since exposure to this PCB congener, which has previously been linked to diabetes development, might thereby play a role in the distribution of abdominal adipose tissue.  相似文献   

19.
Stress and the cortisol awakening response (CAR) have been independently linked to increases in abdominal fat depots. This cross-sectional study examined the CAR as a moderator of the association between stress, visceral adipose tissue (VAT), and subcutaneous abdominal adipose tissue (SAT) in a sample (N = 23) of female peripubertal Hispanic girls aged from 8 to 11. The study included: (i) monitored salivary cortisol collection, (ii) VAT and SAT obtained by multislice magnetic resonance imaging, and (iii) a stressful life events checklist with four domain-specific subscales: peer, family, personal, and school. Regression analysis indicated an interaction of school-related life events and CAR on VAT and SAT, with greater numbers of school-related events being related to greater VAT and SAT for girls with high CAR, but no association with VAT or SAT for girls with low CAR. Similar to job stress in adults, school-related stress in children may contribute to central adiposity, especially for girls with high CAR.  相似文献   

20.
Regional fat distribution rather than overall fat volume has been considered to be important to understanding the link between obesity and metabolic disorders. We aimed to evaluate the independent associations of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) with metabolic risk factors in apparently healthy middle‐aged Japanese. Participants were 1,119 men and 854 women aged 38–60 years who were not taking medications for diabetes, hypertension, or dyslipidemia. VAT and SAT were measured by use of computed tomography (CT) scanning. VAT and SAT were significantly and positively correlated with each other in men (r = 0.531, P < 0.001) and women (r = 0.589, P < 0.001). In multiple regression analyses, either measure of abdominal adiposity (VAT or SAT) was positively associated with blood pressure, fasting plasma glucose, and log triglyceride (P < 0.001) and inversely with high‐density lipoprotein (HDL)‐cholesterol (P < 0.001). When VAT and SAT were simultaneously included in the model, the association of VAT with triglycerides was maintained (P < 0.001) but that of SAT was lost. The same was true for HDL‐cholesterol in women. For fasting plasma glucose, the association with VAT was strong (P < 0.001) and the borderline association with SAT was maintained (P = 0.060 in men and P = 0.020 in women). Both VAT and SAT were independently associated with blood pressure (P < 0.001). Further adjustment for anthropometric indices resulted in the independent association only with VAT for all risk factors. In conclusion, impacts of VAT and SAT differed among risk factors. VAT showed dominant impacts on triglyceride concentrations in both genders and on HDL‐cholesterol in women, while SAT also had an independent association with blood pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号