首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Today, Fmoc SPPS is the method of choice for peptide synthesis. Very‐high‐quality Fmoc building blocks are available at low cost because of the economies of scale arising from current multiton production of therapeutic peptides by Fmoc SPPS. Many modified derivatives are commercially available as Fmoc building blocks, making synthetic access to a broad range of peptide derivatives straightforward. The number of synthetic peptides entering clinical trials has grown continuously over the last decade, and recent advances in the Fmoc SPPS technology are a response to the growing demand from medicinal chemistry and pharmacology. Improvements are being continually reported for peptide quality, synthesis time and novel synthetic targets. Topical peptide research has contributed to a continuous improvement and expansion of Fmoc SPPS applications. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
In this study, a novel N‐acetyl‐glucosaminylated asparagine derivative was developed. This derivative carried TFA‐sensitive protecting groups and was derived from commercially available compounds only in three steps. It was applicable to the ordinary 9‐fluorenylmethoxycarbonyl (Fmoc)‐based solid‐phase peptide synthesis (SPPS) method, and the protecting groups on the carbohydrate moiety could be removed by a single step of TFA cocktail treatment generally used for the final deprotection step in Fmoc‐SPPS. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
Stand‐alone coupling reagents derived from bis(2‐oxo‐3‐oxazolidinyl)phosphorodiamidic chloride show efficient performance in solution and SPPS. In particular, the Oxyma Pure (Luxembourg Biotech., Tel Aviv, Israel) derivative shows the additional advantage of being highly soluble in DMF and even fairly soluble in CH3CN, which can extend its use for the synthesis of complex peptides. These new stand‐alone coupling reagents have the advantage of not bearing any counteranion such as PF6 or BH4, whose presence can jeopardize the purification of final peptides prepared in solution. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
The use of lanthanides in preference to radioisotopes as probes for various biological assays has gained enormous popularity. The introduction of lanthanide chelates to peptides/proteins can be carried out either in solution using a commercially available labelling kit or by solid‐phase peptide synthesis using an appropriate lanthanide chelate. Herein, a detailed protocol for the latter is provided for the labelling of peptides or small proteins with diethylenetriamine‐N, N, N″, N″‐tetra‐tert‐butyl acetate‐N′‐acetic acid (DTPA) chelate or other similar chelates on a solid support using a chimeric insulin‐like peptide composed of human insulin‐like peptide 5 (INSL5) A‐chain and relaxin‐3 B‐chain as a model peptide. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
We recently identified a novel cDNA encoding a small secretory protein of 80 amino acid residues, termed neurosecretory protein GL (NPGL), from the chicken hypothalamus. Homologs of NPGL have been reported to be present in mammals, such as human and rat. NPGL is amidated at its C‐terminus, contains an intramolecular disulfide bond, and is hydrophobic in nature. In this study, we have optimized the synthesis of the entire 80‐amino acid peptide sequence of rat NPGL by microwave‐assisted solid‐phase peptide synthesis. NPGL was obtained with a 10% yield when the coupling reactions were performed using 1‐[Bis(dimethylamino)methylene]‐1H‐1,2,3‐triazolo[4,5‐b]pyridinium‐3‐oxid hexafluorophosphate (HATU) at 50 °C for 5 min, and Fmoc deprotections were performed using 40% piperidine containing 0.1 M HOBt. Furthermore, the disulfide bond of NPGL was formed with 20% yield with the use of glutathione‐containing redox buffer and 50% acetonitrile. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
The RING finger domain of the Mdm2, located at the C‐terminus of the protein, is necessary for regulation of p53, a tumor suppressor protein. The 48‐residues long Mdm2 peptide is an important target for studying its interaction with small anticancer drug candidates. For the chemical synthesis of the Mdm2 RING finger domain, the fragment condensation on solid‐phase and the fragment condensation in solution were studied. The latter method was performed using either protected or free peptides at the C‐terminus as the amino component. Best results were achieved using solution condensation where the N‐component was applied with the C‐terminal carboxyl group left unprotected. The developed method is well suited for large‐scale synthesis of Mdm2 RING finger domain, combining the advantages of both solid‐phase and solution synthesis. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
During the final step of t‐Boc/Bzl, solid‐phase peptide synthesis (SPPS)‐protecting groups from amino acids (aa) side chains must be removed from the target peptides during cleavage from the solid support . These reaction steps involve hydrolysis with hydrogen fluoride (HF) in the presence of a nucleophile (scavenger), whose function is to trap the carbocations produced during SN1‐type reactions. Five peptide sequences were synthesised for evaluating p‐methoxyphenol effectiveness as a potent scavenger. After the synthesis, the resin–peptide was then separated into two equal parts to be cleaved using two scavengers: conventional reactive p‐cresol (reported in the literature as an effective acyl ion eliminator) and p‐methoxyphenol (hypothesised as fulfilling the same functions as the routinely used scavenger). Detailed analysis of the electrostatic potential map (EPM) revealed similarities between these two nucleophiles, regarding net atomic charge, electron density distribution, and similar pKa values. Good scavenger efficacy was observed by chromatography and mass spectrometry results for the synthesised molecules, which revealed that p‐methoxyphenol can be used as a potent scavenger during SPPS by t‐Boc/Bzl strategy, as similar results were obtained using the conventional scavenger.  相似文献   

8.
N‐[1‐(4‐(4‐fluorophenyl)‐2,6‐dioxocyclohexylidene)ethyl] (Fde) protected amino acids have been prepared and applied in solid‐phase peptide synthesis monitored by gel‐phase 19F NMR spectroscopy. The Fde protective group could be cleaved with 2% hydrazine or 5% hydroxylamine solution in DMF as determined with gel‐phase 19F NMR spectroscopy. The dipeptide Ac‐L ‐Val‐L ‐Val‐NH2 12 was constructed using Fde‐L ‐Val‐OH and no noticeable racemization took place during the amino acid coupling with N,N′‐diisopropylcarbodiimide and 1‐hydroxy‐7‐azabenzotriazole or Fde deblocking. To extend the scope of Fde protection, the hydrophobic nonapeptide LLLLTVLTV from the signal sequence of mucin MUC1 was successfully prepared using Fde‐L ‐Leu‐OH at diagnostic positions. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
10.
Microwave energy represents an efficient manner to accelerate both the deprotection and coupling reactions in 9-fluorenylmethyloxycarbonyl (Fmoc) solid phase peptide synthesis (SPPS). Typical SPPS side reactions including racemization and aspartimide formation can occur with microwave energy but can easily be controlled by routine use of optimized methods. Cysteine, histidine, and aspartic acid were susceptible to racemization during microwave SPPS of a model 20mer peptide containing all 20 natural amino acids. Lowering the microwave coupling temperature from 80 degrees C to 50 degrees C limited racemization of histidine and cysteine. Additionally, coupling of both histidine and cysteine can be performed conventionally while the rest of the peptide is synthesized using microwave without any deleterious effect, as racemization during the coupling reaction was limited to the activated ester state of the amino acids up to 80 degrees C. Use of the hindered amine, collidine, in the coupling reaction also minimized formation of D-cysteine. Aspartimide formation and subsequent racemization of aspartic acid was reduced by the addition of HOBt to the deprotection solution and/or use of piperazine in place of piperidine.  相似文献   

11.
Mono‐N‐ethylated α‐amino acid esters are obtained in high yields using reductive amination procedures. Formation of imine is achieved by excess of acetaldehyde, followed by removal of acetaldehyde and reduction by NaBH(OAc)3. The elaborated one‐pot synthesis allows for the efficient synthesis of side‐chain protected amino acid derivatives. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Attracted by the possibility to optimize time and yield of the synthesis of difficult peptide sequences by MW irradiation, we compared Fmoc/tBu MW‐assisted SPPS of 1–34 N‐terminal fragment of parathyroid hormone‐related peptide (PTHrP) with its conventional SPPS carried out at RT. MWs were applied in both coupling and deprotection steps of SPPS protocol. During the stepwise elongation of the resin‐bound peptide, monitoring was conducted by performing MW‐assisted mini‐cleavages and analyzing them by UPLC‐ESI‐MS. Identification of some deletion sequences was helpful to recognize critical couplings and as such helped to guide the introduction of MW irradiations to these stages. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
A semi‐automated technique for massive parallel solid‐phase organic synthesis based on a “split only” strategy is described. Two different types of purpose‐oriented reaction vessels are used. The initial steps are performed in domino blocks, and the resin‐bound intermediates then split into wells of a micro plate for the last combinatorial step. The domino block is a reaction block for manual and semi‐automatic parallel solid‐phase organic synthesis that simplifies liquid exchange and integrates common synthetic steps. The synthesis in micro plates does not use any filter for separation of resin beads from the supernatant liquid, and allows high throughput parallel synthesis on solid phase to be performed. This technique, documented on examples of diverse disubstituted benzenes, includes the use of gaseous cleavage in the last synthetic step and allows the synthesis of thousands of compounds per day in mg quantities. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng (Comb Chem) 61:135–141, 1998/1999.  相似文献   

14.
The 4‐methoxybenzyloxymethyl (MBom) group was introduced at the Nπ‐position of the histidine (His) residue by using a regioselective procedure, and its utility was examined under standard conditions used for the conventional and the microwave (MW)‐assisted solid phase peptide synthesis (SPPS) with 9‐fluorenylmethyoxycarbonyl (Fmoc) chemistry. The Nπ‐MBom group fulfilling the requirements for the Fmoc strategy was found to prevent side‐chain‐induced racemization during incorporation of the His residue even in the case of MW‐assisted SPPS performed at a high temperature. In particular, the MBom group proved to be a suitable protecting group for the convergent synthesis because it remains attached to the imidazole ring during detachment of the protected His‐containing peptide segments from acid‐sensitive linkers by treatment with a weak acid such as 1% trifluoroacetic acid in dichloromethane. We also demonstrated the facile synthesis of Fmoc‐His(π‐MBom)‐OH with the aid of purification procedure by crystallization to effectively remove the undesired τ‐isomer without resorting to silica gel column chromatography. This means that the present synthetic procedure can be used for large‐scale production without any obstacles. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
A series of six novel opioid peptide analogs containing one to three N‐methylamino acid residues, and six cyclic counterparts of these peptides were prepared by the solid‐phase method. Introduction of two consecutive N‐methylated amino acids, as well as cyclization of such conformationally constrained sequences, turned out to be challenging. The use of a recently reported triazine‐based coupling reagent, 4‐(4,6‐dimethoxy‐1,3,5‐triazin‐2‐yl)‐4‐methylmorpholinium toluene‐4‐sulfonate, enabled the synthesis and cyclization of the designed analogs in acceptable yields and with a lesser amount of by‐products than observed with the standard coupling reagents such as TBTU or HATU.Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
A convergent synthesis for erythropoietin (EPO) 1‐28 N‐glycopeptide hydrazides was developed. In this approach, EPO 1‐28 peptides were synthesized on the solid phase and converted to C‐terminal hydrazides after cleavage from the resin. After selective deprotection of the Asp24 side chain, the desired glycosylamine was coupled by pseudoproline‐assisted Lansbury aspartylation. Although the initial yields of the EPO 1‐28 glycopeptides were satisfactory, they could be markedly improved by increasing the purity of the peptide using a reversed‐phase high‐performance liquid chromatography (RP‐HPLC) purification of the protected peptide.  相似文献   

17.
Proteasomes are cellular proteases involved in the degradation of numerous cellular proteins. The 20S proteasome is a cylindrical 28‐mer protein complex composed of two outer heptameric α‐rings forming the entrance for the protein substrate and two inner heptameric β‐rings carrying the catalytic sites. Numerous in vitro studies have provided evidence that the 20S proteasome may degrade peptides of various lengths and even unfolded full‐length polypeptide chains. However, a direct demonstration that the 20S proteasome may also cleave surface‐attached immobilized peptides is lacking so far. To this end, we used a model system by coupling peptides from different source proteins covalently to the surface of glass beads and applied nanoLC/MS analysis to monitor the generation of proteolytic fragments in the presence of the 20S proteasome. Detectable amounts of cleavage products occurred within a few minutes indicating a much higher cleavage rate than observed with the same substrates in solution. Our finding lends support to the idea that proteasomes may directly degrade segments of membrane‐bound proteins protruding into the aqueous phase. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Depsidomycin is a cyclic heptadepsi‐peptide isolated from the cultured broth of Streptomyces lavendofoliae MI951‐62F2. It exhibits significant antimicrobial and immunosuppressive activity. The total synthesis of a depsidomycin analogue in which 1,2‐piperazine‐3‐carboxylic acid was substituted with proline is described. After several trials using different strategies, the desired depsidomycin analogue was obtained via stepwise synthesis starting by the amino acid ‘head’ and macrolactonization under Yamaguchi conditions. The cyclic depsipeptide was evaluated to have an minimum inhibitory concentration (MIC) of 4 µg/ml against H37RV and 16 µg/ml against MDR clinical strains of MTB (MDR‐MTB), while the linear precursor 8 also had MICs of 4 and 16 µg/ml for the susceptible and resistant strains, respectively. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Peptide‐oligonucleotide conjugates (POCs) are interesting molecules as they covalently combine 2 of the most important biomacromolecules. Sometimes, the synthesis of POCs involves unexpected difficulties; however, POCs with self‐assembling propensity are even harder to synthesize and purify. Here, we show that solid‐phase peptide fragment condensation combined with thiol‐maleimide or copper‐catalyzed azide‐alkyne cycloaddition click chemistries is useful for the syntheses of self‐assembling POCs. We describe guidelines for the selection of reactive functional groups and their placement during the conjugation reaction and consider the cost‐effectiveness of the reaction. Purification is another important challenge during the preparation of POCs. Our results show that polyacrylamide gel electrophoresis under denaturing conditions is most suitable to recover a high yield of self‐assembling POCs. This report provides the first comprehensive study of the preparation of self‐assembling POCs, which will lay a foundation for the development of elegant and sophisticated molecular assemblies.  相似文献   

20.
A core‐shell type polymer support for solid‐phase peptide synthesis has been developed for high coupling efficiency of peptides and versatile applications such as on‐bead bioassays. Although various kinds of polymer supports have been developed, they have their own drawbacks including poor accessibility of reagents and incompatibility in aqueous solution. In this paper, we prepared hydrophilic tri(ethylene glycol) (TEG) grafted core‐shell type polymer supports (TEG SURE) for efficient solid‐phase peptide synthesis and on‐bead bioassays. TEG SURE was prepared by grafting TEG derivative on the surface of AM PS resin via biphasic diffusion control method and subsequent acetylation of amine groups which are located at the core region of AM PS resin. The performance of TEG SURE was evaluated by synthesizing several peptides. Three points can be highlighted: (1) easy control of loading level of TEG, (2) improved efficiency of peptide synthesis compared with the conventional resins, and (3) applicability of on‐bead bioassays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号