首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radioresistance causes a major problem for improvement of outcomes of patients treated with radiation. Targeting for DNA repair deficient mechanisms is a hallmark of sensitization to resistance. We tested whether Olaparib, a (poly) ADP‐ribose polymerase (PARP) inhibitor, can sensitize the radioresistant FaDu cells to radiotherapy. Radioresistant FaDu cells, called FaDu‐RR cells, were used as the radioresistant hypopharyngeal cancer models. The expression of PARP1 was detected in both FaDu and FaDu‐RR cells. The role of Olaparib in radiosensitization was analysed with several assays including clonogenic cell survival, cell proliferation and cell cycle, and radioresistant xenograft. High expression of PARP1 had a significant effect on enhancing radioresistance in FaDu‐RR cells compared with FaDu cells. After treatment of Olaparib, FaDu‐RR cells showed significantly less and smaller surviving colonies, lower proliferation ability and G2/M arrest than those in the group without treatment. Moreover, Olaparib significantly reduced growth of tumours in FaDu‐RR cell xenografts treated with ionizing radiation. Olaparib can significantly inhibit PARP1 expression and consequently has significant effects on radiosensitization in FaDu‐RR cells. These results indicate that Olaparib may help individualize treatment and improve their outcomes of hypopharyngeal cancer patients treated with radiation.  相似文献   

2.
Radiotherapy is a well-established treatment for cancer. However, the existence of radioresistant cells is one of the major obstacles in radiotherapy. In order to understand the mechanism of cellular radioresistance and develop more effective radiotherapy, we have established clinically relevant radioresistant (CRR) cell lines, which continue to proliferate under daily exposure to 2 Gray (Gy) of X-rays for >30 days. X-ray irradiation significantly induced autophagic cells in parental cells, which was exiguous in CRR cells, suggesting that autophagic cell death is involved in cellular radiosensitivity. An autophagy inducer, rapamycin sensitized CRR cells to the level of parental cells and suppressed cell growth. An autophagy inhibitor, 3-methyladenine induced radioresistance of parental cells. Furthermore, inhibition of autophagy by knockdown of Beclin-1 made parental cells radioresistant to acute radiation. These suggest that the suppression of autophagic cell death but not apoptosis is mainly involved in cellular radioresistance. Therefore, the enhancement of autophagy may have a considerable impact on the treatment of radioresistant tumor.  相似文献   

3.
Radioresistance (inherent or acquired) remains a major obstacle affecting the clinical outcome of radiotherapy for laryngeal carcinoma. Results from our laboratory and other groups suggest that aberrant glycosylation contributes to cancer acquired radioresistance. However, the role of glycosylation in inherent radioresistance of laryngeal carcinoma has not been fully uncovered. In this study, we investigated the glycan profiling of the inherent radioresistant (Hep-2max) and radiosensitive (Hep-2 min) cell lines using lectin microarray analysis. The results revealed that the radioresistant cell line Hep-2max presented higher core 1-type O-glycans than the sensitive one. Further analysis of the O-glycan regulation by benzyl-α-GalNAc application in Hep-2max cells showed partial inhibition of the O-glycan biosynthesis and increased radiosensitivity. In addition, core 1 β1, 3-galactosyltransferase (C1GALT1) overexpression in Hep-2 min cells enhanced cell migration, invasion, and radioresistance. Conversely, knockdown of C1GALT1 in Hep-2max cells was able to suppress these malignant phenotypes. Moreover, mechanistic investigations showed that C1GALT1 modified the O-glycans on integrin β1 and regulated its activity. The glycosylation-mediated radioresistance was further inhibited by anti-integrin β1 blocking antibody. Importantly, we also observed that core 1-type O-glycans expression was correlated with advanced tumor stage, metastasis, and poor survival of laryngeal carcinoma patients. These findings suggest that altered O-glycosylation can lead to the inherent radioresistance and progression, and therefore may be important for enhancing the efficacy of radiotherapy in laryngeal carcinoma.  相似文献   

4.
Acquired radioresistance of cancer cells interferes with radiotherapy and increases the probability of cancer recurrence. HepG2‐8960‐R, which is one of several clinically relevant radioresistant (CRR) cell lines, has a high tolerance to the repeated clinically relevant doses of X‐ray radiation. In this study, HepG2‐8960‐R had slightly lower cell proliferation ability than HepG2 in the presence of FBS. In particular, epidermal growth factor (EGF) hardly enhanced cell proliferation and DNA synthesis in HepG2‐8960‐R. Additionally, EGF could not induce the activation of Erk1/2, because the expression of EGF receptor (EGFR) protein decreased in HepG2‐8960‐R in accordance with the methylation of the EGFR promoter region. Therefore, cetuximab did not inhibit HepG2‐8960‐R cell proliferation. Our study showed that HepG2‐8960‐R had radioresistant and cetuximab‐resistant abilities. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Radiotherapy is a well-established therapeutic modality used in the treatment of many cancers. However, radioresistance remains a serious obstacle to successful treatment. Radioresistance can cause local recurrence and distant metastases in some patients after radiation treatment. Thus, many studies have attempted to identify effective radiosensitizers. Eph receptor functions contribute to tumor development, modulating cell-cell adhesion, invasion, neo-angiogenesis, tumor growth and metastasis. However, the role of EphA3 in radioresistance remains unclear. In the current study, we established a stable radioresistant head and neck cancer cell line (AMC HN3R cell line) and found that EphA3 was expressed predominantly in the radioresistant head and neck cancer cell line through DNA microarray, real time PCR and Western blotting. Additionally, we found that EphA3 was overexpressed in recurrent laryngeal cancer specimens after radiation therapy. EphA3 mediated the tumor invasiveness and migration in radioresistant head and neck cancer cell lines and epithelial mesenchymal transition- related protein expression. Inhibition of EphA3 enhanced radiosensitivity in the AMC HN 3R cell line in vitro and in vivo study. In conclusion, our results suggest that EphA3 is overexpressed in radioresistant head and neck cancer and plays a crucial role in the development of radioresistance in head and neck cancers by regulating the epithelial mesenchymal transition pathway.  相似文献   

6.
Radiotherapy is an important treatment modality for oral cancer. However, development of radioresistance is a major hurdle in the efficacy of radiotherapy in oral cancer patients. Identifying predictors of radioresistance is a challenging task and has met with little success. The aim of the present study was to explore the differential spectral profiles of the established radioresistant sublines and parental oral cancer cell lines by Raman spectroscopy. We have established radioresistant sublines namely, 50Gy-UPCI:SCC029B and 70Gy-UPCI:SCC029B from its parental UPCI:SCC029B cell line, by using clinically admissible 2Gy fractionated ionizing radiation (FIR). The developed radioresistant character was validated by clonogenic cell survival assay and known radioresistance-related protein markers like Mcl-1, Bcl-2, Cox-2 and Survivin. Altered cellular morphology with significant increase (p<0.001) in the number of filopodia in radioresistant cells with respect to parental cells was observed. The Raman spectra of parental UPCI:SCC029B, 50Gy-UPCI:SCC029B and 70Gy-UPCI:SCC029B cells were acquired and spectral features indicate possible differences in biomolecules like proteins, lipids and nucleic acids. Principal component analysis (PCA) provided three clusters corresponding to radioresistant 50Gy, 70Gy-UPCI:SCC029B sublines and parental UPCI:SCC029B cell line with minor overlap, which suggest altered molecular profile acquired by the radioresistant cells due to multiple doses of irradiation. The findings of this study support the potential of Raman spectroscopy in prediction of radioresistance and possibly contribute to better prognosis of oral cancer.  相似文献   

7.
Radioresistance is a major challenge in prostate cancer (CaP) radiotherapy (RT). In this study, we investigated the role and association of epithelial–mesenchymal transition (EMT), cancer stem cells (CSCs) and the PI3K/Akt/mTOR signaling pathway in CaP radioresistance. We developed three novel CaP radioresistant (RR) cell lines (PC-3RR, DU145RR and LNCaPRR) by radiation treatment and confirmed their radioresistance using a clonogenic survival assay. Compared with untreated CaP-control cells, the CaP-RR cells had increased colony formation, invasion ability and spheroid formation capability (P<0.05). In addition, enhanced EMT/CSC phenotypes and activation of the checkpoint proteins (Chk1 and Chk2) and the PI3K/Akt/mTOR signaling pathway proteins were also found in CaP-RR cells using immunofluorescence, western blotting and quantitative real-time PCR (qRT-PCR). Furthermore, combination of a dual PI3K/mTOR inhibitor (BEZ235) with RT effectively increased radiosensitivity and induced more apoptosis in CaP-RR cells, concomitantly correlated with the reduced expression of EMT/CSC markers and the PI3K/Akt/mTOR signaling pathway proteins compared with RT alone. Our findings indicate that CaP radioresistance is associated with EMT and enhanced CSC phenotypes via activation of the PI3K/Akt/mTOR signaling pathway, and that the combination of BEZ235 with RT is a promising modality to overcome radioresistance in the treatment of CaP. This combination approach warrants future in vivo animal study and clinical trials.  相似文献   

8.
Kim W  Youn H  Seong KM  Yang HJ  Yun YJ  Kwon T  Kim YH  Lee JY  Jin YW  Youn B 《Radiation research》2011,176(5):539-552
Resistance of cancer cells to ionizing radiation plays an important role in the clinical setting of lung cancer treatment. To date, however, the exact molecular mechanism of radiosensitivity has not been well explained. In this study, we compared radioresistance in two types of non-small cell lung cancer (NSCLC) cells, NCI-H460 and A549, and investigated the signaling pathways that confer radioresistance. In radioresistant cells, exposure to radiation led to overexpression of PIM1 and reduction of protein phosphatases (PP2A and PP5), which induced translocation of PIM1 into the nucleus. Increased nuclear PIM1 phosphorylated PRAS40. Consequently, pPRAS40 made a trimeric complex with 14-3-3 and AKT-activated pFOXO3a, which then moved rapidly to the cytoplasm. Cytoplasmic retention of FOXO3a was associated with downregulation of proapoptotic genes and possibly radioresistance. On the other hand, no suppressive effect of radiation on protein phosphatases was detected and, concomitantly, protein phosphatases downregulated PIM1 in radiosensitive cells. In this setting, PIM1-activated pPRAS40, AKT-activated pFOXO3a, and their complex formation with 14-3-3 could be key regulators of the radiation-induced radioresistance in NSCLC cells.  相似文献   

9.
In the present study, we examined the effects of methanol extracts of Picrasma quassioides (MEPQ) on apoptosis in human cervical cancer cells. The results showed that MEPQ decreased the viability and induced caspase‐dependent apoptosis in HEp‐2 cells. MEPQ decreased specificity protein 1 (Sp1) in HEp‐2 cells, whereas Sp1 mRNA was not changed. We found that MEPQ reduced Sp1 protein through proteasome‐dependent protein degradation, but not the inhibition of protein synthesis. Also, MEPQ increased the expressions of Bad and truncated Bid (t‐Bid) but did not alter other Bcl‐2 family members. The knock‐down of Sp1 by both Sp1 interfering RNA and Mithramycin A, Sp1 specific inhibitor clearly increased Bad and t‐Bid expression to decrease cell viability and induce apoptosis. In addition, MEPQ inhibited cell viability and induced apoptotic cell death through the modulation of Sp1 in KB cells. These results suggest that MEPQ may be a potential anticancer agent for human cervical cancer. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Radiation therapy plays an important role in the management of prostate carcinoma. However, the problem of radioresistance and molecular mechanisms by which prostate carcinoma cells overcome cytotoxic effects of radiation therapy remains to be elucidated. In order to investigate possible intracellular mechanisms underlying the prostate carcinoma recurrences after radiotherapy, we have established three radiation-resistant prostate cancer cell lines, LNCaP-IRR, PC3-IRR, and Du145-IRR derived from the parental LNCaP, PC3, and Du145 prostate cancer cells by repetitive exposure to ionizing radiation. LNCaP-IRR, PC3-IRR, and Du145-IRR cells (prostate carcinoma cells recurred after radiation exposure (IRR cells)) showed higher radioresistance and cell motility than parental cell lines. IRR cells exhibited higher levels of androgen and epidermal growth factor (EGF) receptors and activation of their downstream pathways, such as Ras-mitogen-activated protein kinase (MAPK) and phosphatidyl inositol 3-kinase (PI3K)-Akt and Jak-STAT. In order to define additional mechanisms involved in the radioresistance development, we determined differences in the proteome profile of parental and IRR cells using 2-D DIGE followed by computational image analysis and MS. Twenty-seven proteins were found to be modulated in all three radioresistant cell lines compared to parental cells. Identified proteins revealed capacity to interact with EGF and androgen receptors related signal transduction pathways and were involved in the regulation of intracellular routs providing cell survival, increased motility, mutagenesis, and DNA repair. Our data suggest that radioresistance development is accompanied by multiple mechanisms, including activation of cell receptors and related downstream signal transduction pathways. Identified proteins regulated in the radioresistant prostate carcinoma cells can significantly intensify activation of intracellular signaling that govern cell survival, growth, proliferation, invasion, motility, and DNA repair. In addition, such analyses may be utilized in predicting cellular response to radiotherapy.  相似文献   

11.
12.
Phosphate-activated mitochondrial glutaminase (GLS2) is suggested to be linked with elevated glutamine metabolism. It plays an important role in catalyzing the hydrolysis of glutamine to glutamate. The present study was to investigate the potent effect of GLS2 on radioresistance of cervical carcinoma. GLS2 was examined in 144 cases of human cervical cancer specimens (58 radioresistant specimens, 86 radiosensitive specimens) and 15 adjacent normal cervical specimens with immunohistochemistry. HeLa cells were treated with a cumulative dose of 50 Gy X-rays, over 6 months, yielding the resistant sub-line HeLaR. The expressions of GLS2 were measured by Western blot. Radioresistance was tested by colony survival assay. Apoptosis was determined by flow cytometry. The levels of glutathione (GSH), reactive oxygen species (ROS), NAD+/NADH ratio and NADP+/NADPH ratio were detected by quantization assay kit. Xenografts were used to confirm the effect of GLS2 on radioresistance in vivo. The expressions of GLS2 were significantly enhanced in tumor tissues of radioresistant patients compared with that in radiosensitive patients. In vitro, the radioresistant cell line HeLaR exhibited significantly increased GLS2 levels than its parental cell line HeLa. GLS2 silenced radioresistant cell HeLaR shows substantially enhanced radiosensitivity with lower colony survival and higher apoptosis in response to radiation. In vivo, xenografts with GLS2 silenced HeLaR were more sensitive to radiation. At the molecular level, knock-down of GLS2 increased the intracellular ROS levels of HeLaR exposed to irradiation by decreasing the productions of antioxidant GSH, NADH and NADPH. GLS2 may have an important role in radioresistance in cervical cancer patients.  相似文献   

13.
Radiotherapy is the major treatment modality for uterine cervical cancer, but in some cases, the disease is radioresistant. Defining the molecular events that contribute to radioresistance and progression of cancer are of critical importance. Here we evaluated the role of Fused Toes Homolog (FTS) in radiation resistance of cervical carcinoma. Immunostaning of cervical cancer cells and tissues revealed that FTS localization and expression was changed after radiation. Targeted stable knockdown of FTS in HeLa cells led to the growth inhibition after radiation. Radiation induced AKT mediated cytoprotective effect was countered by FTS knockdown which leads to PARP cleavage and caspase-3 activation leading to cell death. FTS knockdown promotes radiation induced cell cycle arrest at G0/G1 and apoptosis of HeLa cells with concurrent alterations in the display of cell cycle regulatory proteins. This study revealed FTS is involved in radioresistance of cervical cancer. Targeted inhibition of FTS led to the shutdown of key elemental characteristics of cervical cancer and could lead to an effective therapeutic strategy.  相似文献   

14.

Background

Radiotherapy is one of the major therapeutic strategies in cancer treatment. The telomere-binding protein TPP1 is an important component of the shelterin complex at mammalian telomeres. Our previous reports showed that TPP1 expression was elevated in radioresistant cells, but the exact effects and mechanisms of TPP1 on radiosensitivity is unclear.

Principal Findings

In this study, we found that elevated TPP1 expression significantly correlated with radioresistance and longer telomere length in human colorectal cancer cell lines. Moreover, TPP1 overexpression showed lengthened telomere length and a significant decrease of radiosensitivity to X-rays. TPP1 mediated radioresistance was correlated with a decreased apoptosis rate after IR exposure. Furthermore, TPP1 overexpression showed prolonged G2/M arrest mediated by ATM/ATR-Chk1 signal pathway after IR exposure. Moreover, TPP1 overexpression accelerated the repair kinetics of total DNA damage and telomere dysfunction induced by ionizing radiation.

Conclusions

We demonstrated that elevated expressions of TPP1 in human colorectal cancer cells could protect telomere from DNA damage and confer radioresistance. These results suggested that TPP1 may be a potential target in the radiotherapy of colorectal cancer.  相似文献   

15.
16.
Tumour radioresistance is a major problem for cancer radiation therapy. To identify the underlying mechanisms of this resistance, we used human non-small cell lung cancer (NSCLC) cell lines and focused on the Inhibitor of Apoptosis Protein (IAP) family, which contributes to tumourigenesis and chemoresistance. We investigated the possible correlation between radioresistance in six NSCLC cell lines and IAP protein levels and tested the radiosensitizing effect of birinapant in vitro, a molecule that mimics the second mitochondria-derived activator of caspase. We found that birinapant-induced apoptosis and inhibited the proliferation of NSCLC cells after exposure to radiation. These effects were induced by birinapant downregulation of cIAP protein levels and changes of cIAP gene expression. Overall, birinapant can inhibit tumour growth of NSCLC cell lines to ironizing radiation and act as a promising strategy to overcome radioresistance in NSCLC.  相似文献   

17.
Tumor radioresistance leads to recurrence after radiation therapy. The radioresistant phenotype has been hypothesized to reside in the cancer stem cell (CSC) component of breast and other tumors and is considered to be an inherent property of CSC. In this study, we assessed the radiation resistance of breast CSCs using early passaged, patient-derived xenografts from two separate patients. We found a patient-derived tumor in which the CSC population was rapidly depleted 2 weeks after treatment with radiation, based on CD44(+) CD24(-) lin(-) phenotype and aldehyde dehydrogenase 1 immunofluorescence, suggesting sensitivity to radiotherapy. The reduction in CSCs according to phenotypic markers was accompanied by a decrease in functional CSC activity measured by tumor sphere frequency and the ability to form tumors in mice. In contrast, another patient tumor sample displayed enrichment of CSC after irradiation, signifying radioresistance, in agreement with others. CSC response to radiation did not correlate with the level of reactive oxygen species in CSC versus non-CSC. These findings demonstrate that not all breast tumor CSCs are radioresistant and suggest a mechanism for the observed variability in breast cancer local recurrence.  相似文献   

18.
Objectives: Radiotherapy has played a limited role in the treatment of non-small cell lung cancer (NSCLC) due to the risk of tumour radioresistance. We previously established the radioresistant non-small cell lung cancer (NSCLC) cell line H460R. In this study, we identified differentially expressed genes between these radioresistant H460R cells and their radiosensitive parent line. We further evaluated the role of a differentially expressed gene, ITGB1, in NSCLC cell radioresistance and as a potential target for improving radiosensitivity.Materials and Methods: The radiosensitivity of NSCLC cells was evaluated by flow cytometry, colony formation assays, immunofluorescence, and Western blotting. Bioinformatics assay was used to identify the effect of ITGB1 and YAP1 expression in NSCLC tissues.Results: ITGB1 mRNA and protein expression levels were higher in H460R than in the parental H460 cells. We observed lower clonogenic survival and cell viability and a higher rate of apoptosis of ITGB1-knockdown A549 and H460R cells than of wild type cells post-irradiation. Transfection with an ITGB1 short hairpin (sh) RNA enhanced radiation-induced DNA damage and G2/M phase arrest. Moreover, ITGB1 induced epithelial-mesenchymal transition (EMT) of NSCLC cells. Silencing ITGB1 suppressed the expression and intracellular translocation of Yes-associated protein 1 (YAP1), a downstream effector of ITGB1.Conclusions: ITGB1 may induce radioresistance via affecting DNA repair and YAP1-induced EMT. Taken together, our data suggest that ITGB1 is an attractive therapeutic target to overcome NSCLC cell radioresistance.  相似文献   

19.
We previously identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistant biomarker in p53 wild-type A549 cells and found that p53-dependent induction of the PUMA pathway was a critical event in regulating the radioresistant phenotype. Here, we found that HRP-3 knockdown regulates the radioresistance of p53-null H1299 cells through a distinctly different molecular mechanism. HRP-3 depletion was sufficient to cause apoptosis of H1299 cells by generating substantial levels of reactive oxygen species (ROS) through inhibition of the Nrf2/HO-1 antioxidant pathway. Subsequent, ROS-dependent and p53-independent NF-κB activation stimulated expression of c-Myc and Noxa proteins, thereby inducing the apoptotic machinery. Our results thus extend the range of targets for the development of new drugs to treat both p53 wild-type or p53-null radioresistant lung cancer cells.  相似文献   

20.
Clinical resistance to gefitinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), in patients with lung cancer has been linked to acquisition of the T790M resistance mutation in activated EGFR or amplification of MET. Phosphatase and tensin homolog (PTEN) loss has been recently reported as a gefitinib resistance mechanism in lung cancer. The aim of this study was to evaluate the efficacy of radiotherapy in non‐small‐cell lung cancer (NSCLC) with acquired gefitinib resistance caused by PTEN deficiency to suggest radiotherapy as an alternative to EGFR TKIs. PTEN deficient‐mediated gefitinib resistance was generated in HCC827 cells, an EGFR TKI sensitive NSCLC cell line, by PTEN knockdown with a lentiviral vector expressing short hairpin RNA‐targeting PTEN. The impact of PTEN knockdown on sensitivity to radiation in the presence or absence of PTEN downstream signaling inhibitors was investigated. PTEN knockdown conferred acquired resistance not only to gefitinib but also to radiation on HCC827 cells. mTOR inhibitors alone failed to reduce HCC827 cell viability, regardless of PTEN expression, but ameliorated PTEN knockdown‐induced radioresistance. PTEN knockdown‐mediated radioresistance was accompanied by repression of radiation‐induced cytotoxic autophagy, and treatment with mTOR inhibitors released the repression of cytotoxic autophagy to overcome PTEN knockdown‐induced radioresistance in HCC827 cells. These results suggest that inhibiting mTOR signaling could be an effective strategy to radiosensitize NSCLC harboring the EGFR activating mutation that acquires resistance to both TKIs and radiotherapy due to PTEN loss or inactivation mutations. J. Cell. Biochem. 114: 1248–1256, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号