首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loop 181–197 of human thymidylate synthase (hTS) populates two major conformations, essentially corresponding to the loop flipped by 180°. In one of the conformations, the catalytic Cys195 residue lies distant from the active site making the enzyme inactive. Ligands stabilizing this inactive conformation may function as allosteric inhibitors. To facilitate the search for such inhibitors, we have expressed and characterized several mutants designed to shift the equilibrium toward the inactive conformer. In most cases, the catalytic efficiency of the mutants was only somewhat impaired with values of kcat/Km reduced by factors in a 2–12 range. One of the mutants, M190K, is however unique in having the value of kcat/Km smaller by a factor of ~7500 than the wild type. The crystal structure of this mutant is similar to that of the wt hTS with loop 181–197 in the inactive conformation. However, the direct vicinity of the mutation, residues 188–194 of this loop, assumes a different conformation with the positions of Cα shifted up to 7.2 Å. This affects region 116–128, which became ordered in M190K while it is disordered in wt. The conformation of 116–128 is however different than that observed in hTS in the active conformation. The side chain of Lys190 does not form contacts and is in solvent region. The very low activity of M190K as compared to another mutant with a charged residue in this position, M190E, suggests that the protein is trapped in an inactive state that does not equilibrate easily with the active conformer.  相似文献   

2.
The process of peroxisome biogenesis involves several PEX genes that encode the machinery required to assemble the organelle. Among the corresponding peroxins the interaction between PEX3 and PEX19 is essential for early peroxisome biogenesis. However, the intracellular site of this protein interaction is still unclear. To address this question by fluorescence resonance energy transfer (FRET) analysis, we engineered the enhanced yellow fluorescent protein (EYFP) to the C-terminus of PEX3 and the enhanced cyan fluorescent protein (ECFP) to the N-terminus of PEX19. Functionality of the fusion proteins was shown by transfection of human PEX3- and PEX19-deficient fibroblasts from Zellweger patients with tagged versions of PEX3 and PEX19. This led to reformation of import-competent peroxisomes in both cell lines previously lacking detectable peroxisomal membrane structures. The interaction of PEX3-EYFP with ECFP-PEX19 in a PEX3-deficient cell line during peroxisome biogenesis was visualized by FRET imaging. Although PEX19 was predominantly localized to the cytoplasma, the peroxisome was identified to be the main intracellular site of the PEX3-PEX19 interaction. Results were confirmed and quantified by donor fluorescence photobleaching experiments. PEX3 deletion proteins lacking the N-terminal peroxisomal targeting sequence (PEX3 34-373-EYFP) or the PEX19-binding domain located in the C-terminal half of the protein (PEX3 1-140-EYFP) did not show the characteristic peroxisomal localization of PEX3, but were mislocalized to the cytoplasm (PEX3 34-373-EYFP) or to the mitochondria (PEX3 1-140-EYFP) and did not interact with ECFP-PEX19. We suggest that FRET is a suitable tool to gain quantitative spatial information about the interaction of peroxins during the process of peroxisome biogenesis in single cells. These findings complement and extend data from conventional in vitro protein interaction assays and support the hypothesis of PEX3 being an anchor for PEX19 at the peroxisomal membrane.  相似文献   

3.
A probe consisting of Discosoma red fluorescent protein (DsRed) and enhanced yellow fluorescent protein (EYFP) linked by a 19-amino-acid chain containing the caspase-3 cleavage site Asp-Glu-Val-Asp was developed to monitor caspase-3 activation in living cells. The expression of the tandem construct in mammalian cells yielded a strong red fluorescence when excited with 450- to 490-nm light or with a 488-nm argon ion laser line as a result of fluorescence resonance energy transfer (FRET) from donor EYFP to acceptor DsRed. The advantage over previous constructs using cyan fluorescent protein is that our construct can be used when excitation wavelengths lower than 488nm are not available. To validate the construct, murine HT-22 hippocampal neuronal cells were triggered to undergo CD95-induced neuronal death. An increase in caspase-3 activity was demonstrated by a reduction of FRET in cells transfected with the construct. This was manifested by a dequenching of EYFP fluorescence leading to an increase in EYFP emission and a corresponding decrease in DsRed fluorescence, which correlated with an increase in pro-caspase-3 processing. We conclude that CD95-induced caspase-3 activation in HT-22 cells was readily detected at the single-cell level using the DsRed-EYFP-based FRET construct, making this a useful technology to monitor caspase-3 activity in living cells.  相似文献   

4.
5.
An easy and effective strategy for synthesizing a ratiometric fluorescent nanosensor has been demonstrated in this work. Novel fluorescent BSA–AuNPs@Tb–AMP (BSA, bovine serum albumin; AMP, adenosine 5′‐monophosphate; AuNPs, Au nanoparticles) metal–organic framework (MOF) nanostructures were synthesized by encapsulating BSA–AuNPs into Tb–AMP MOFs for the detection of 2,6‐pyridinedicarboxylic acid (DPA) and Hg2+. DPA could strongly co‐ordinate with Tb3+ to replace water molecules from the Tb3+ center and accordingly enhanced the fluorescence of Tb–AMP MOFs. The fluorescence of BSA–AuNPs at 405 nm remained constant. While the fluorescence of BSA–AuNPs at 635 nm was quenched after Hg2+ was added, the fluorescence of Tb–AMP MOFs remained constant. Accordingly, a ratiometric fluorescence nanosensor was constructed for detection of DPA and Hg2+. The ratiometric nanosensor exhibited good selectivity to DPA over other substances. The F545/F405 linearly increased with increase of DPA concentration in the range of 50 nM to 10 μM with a detection limit as low as 17.4 nM. F635/F405 increased linearly with increase of Hg2+ concentration ranging from 50 nM to 1 μM with a detection limit as low as 20.9 nM. Additionally, the nanosensor could be successfully applied for the determination of DPA and Hg2+ in running water.  相似文献   

6.
Targeted therapy involving the activation of death receptors DR4 and/or DR5 by its ligand, TRAIL, can selectively induce apoptosis in certain tumor cells. In order to profile the dynamic activation or trimerization of TRAIL–DR4 in live cells in real‐time, the development of an apoptosis reporter cell line is essential. Fluorescence resonance energy transfer (FRET) technology via a FRET pair, cyan fluorescence protein (CFP) and yellow fluorescence protein (YFP), was used in this study. DR4‐CFP and DR4‐YFP were stably expressed in human lung cancer PC9 cells. Flow cytometer sorting and limited dilution coupled with fluorescence microscopy were used to select a monoclonal reporter cell line with high and compatible expression levels of DR4‐CFP and DR4‐YFP. FRET experiments were conducted and FRET efficiencies were monitored according to the Siegel's YFP photobleaching FRET protocol. Upon TRAIL induction a significant increase in FRET efficiencies from 5% to 9% demonstrated the ability of the DR4‐CFP/YFP reporter cell line in monitoring the dynamic activation of TRAIL pathways. 3D reconstructed confocal images of DR4‐CFP/YFP reporter cells exhibited a colocalized expression of DR4‐CFP and DR4‐YFP mainly on cell membranes. FRET results obtained during this study complements the use of epi‐fluorescence microscopy for FRET analysis. The real‐time FRET analysis allows the dynamic profiling of the activation of TRAIL pathways by using the time‐lapse fluorescence microscopy. Therefore, DR4‐CFP/YFP PC9 reporter cells along with FRET technology can be used as a tool for anti‐cancer drug screening to identify compounds that are capable of activating TRAIL pathways. Biotechnol. Bioeng. 2013; 110: 1396–1404. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Atomically dispersed Fe–N–C catalysts are considered the most promising precious‐metal‐free alternative to state‐of‐the‐art Pt‐based oxygen reduction electrocatalysts for proton‐exchange membrane fuel cells. The exceptional progress in the field of research in the last ≈30 years is currently limited by the moderate active site density that can be obtained. Behind this stands the dilemma of metastability of the desired FeN4 sites at the high temperatures that are believed to be a requirement for their formation. It is herein shown that Zn2+ ions can be utilized in the novel concept of active‐site imprinting based on a pyrolytic template ion reaction throughout the formation of nitrogen‐doped carbons. As obtained atomically dispersed Zn–N–Cs comprising ZnN4 sites as well as metal‐free N4 sites can be utilized for the coordination of Fe2+ and Fe3+ ions to form atomically dispersed Fe–N–C with Fe loadings as high as 3.12 wt%. The Fe–N–Cs are active electocatalysts for the oxygen reduction reaction in acidic media with an onset potential of E0 = 0.85 V versus RHE in 0.1 m HClO4. Identical location atomic resolution transmission electron microscopy imaging, as well as in situ electrochemical flow cell coupled to inductively coupled plasma mass spectrometry measurements, is employed to directly prove the concept of the active‐site imprinting approach.  相似文献   

8.
9.
10.
11.
The in vivo high‐throughput screening (HTS) of human immunodeficiency virus (HIV) protease inhibitors is a significant challenge because of the lack of reliable assays that allow the visualization of HIV targets within living cells. In this study, we developed a new molecular probe that utilizes the principles of Förster resonance energy transfer (FRET) to visualize HIV‐1 protease inhibition within living cells. The probe is constructed by linking two fluorescent proteins: AcGFP1 (a mutant green fluorescent protein) and mCherry (a red fluorescent protein) with an HIV‐1 protease cleavable p2/p7 peptide. The cleavage of the linker peptide by HIV‐1 protease leads to separation of AcGFP1 from mCherry, quenching FRET between AcGFP1 and mCherry. Conversely, the addition of a protease inhibitor prevents the cleavage of the linker peptide by the protease, allowing FRET from AcGFP1 to mCherry. Thus, HIV‐1 protease inhibition can be determined by measuring the FRET signal's change generated from the probe. Both in vitro and in vivo studies demonstrated the feasibility of applying the probe for quantitative analyses of HIV‐1 protease inhibition. By cotransfecting HIV‐1 protease and the probe expression plasmids into 293T cells, we showed that the inhibition of HIV‐1 protease by inhibitors can be visualized or quantitatively determined within living cells through ratiometric FRET microscopy imaging measurement. It is expected that this new probe will allow high‐content screening (HCS) of new anti‐HIV drugs. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

12.
This study reports the preparation and investigation of the modes of binding of the two symmetric 3,6‐diaminoacridine derivatives obtained from proflavine, which are 3,6‐diphenoxycarbonyl aminoacridine and 3,6‐diethoxycarbonyl aminoacridine to human serum albumin (HSA). The interaction of HSA with the derivatives was investigated using fluorescence quenching and ultraviolet‐visible absorption spectra at pH 7.2 and different temperatures. The results suggest that the derivatives used can interact strongly with HSA and are the formation of HSA‐derivative complexes and hydrophobic interactions as the predominant intermolecular forces in stabilizing for each complex. The Stern‐Volmer quenching constants, binding constants, binding sites and corresponding thermodynamic parameters ΔH, ΔS and ΔG were calculated at different temperatures. The binding distance (r) ~ 3 nm between the donor (HSA) and acceptors (3,6‐diethoxycarbonyl aminoacridine, 3,6‐diphenoxycarbonyl aminoacridine and proflavine) was obtained according to Förster's non‐radiative energy transfer theory. Moreover, the limit of detection and limit of quantification of derivatives were calculated in the presence of albumin. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Förster resonant energy transfer (FRET) measurements are widely used to obtain information about molecular interactions and conformations through the dependence of FRET efficiency on the proximity of donor and acceptor fluorophores. Fluorescence lifetime measurements can provide quantitative analysis of FRET efficiency and interacting population fraction. Many FRET experiments exploit the highly specific labelling of genetically expressed fluorescent proteins, applicable in live cells and organisms. Unfortunately, the typical assumption of fast randomization of fluorophore orientations in the analysis of fluorescence lifetime‐based FRET readouts is not valid for fluorescent proteins due to their slow rotational mobility compared to their upper state lifetime. Here, previous analysis of effectively static isotropic distributions of fluorophore dipoles on FRET measurements is incorporated into new software for fitting donor emission decay profiles. Calculated FRET parameters, including molar population fractions, are compared for the analysis of simulated and experimental FRET data under the assumption of static and dynamic fluorophores and the intermediate regimes between fully dynamic and static fluorophores, and mixtures within FRET pairs, is explored. Finally, a method to correct the artefact resulting from fitting the emission from static FRET pairs with isotropic angular distributions to the (incorrect) typically assumed dynamic FRET decay model is presented.   相似文献   

14.
15.
16.
Human immunodeficiency virus type 1 (HIV‐1) infection of the central nervous system (CNS) affects cross‐talk between the individual cell types of the neurovascular unit, which then contributes to disruption of the blood–brain barrier (BBB) and the development of neurological dysfunctions. Although the toxicity of HIV‐1 on neurons, astrocytes and brain endothelial cells has been widely studied, there are no reports addressing the influence of HIV‐1 on pericytes. Therefore, the purpose of this study was to evaluate whether or not pericytes can be infected with HIV‐1 and how such an infection affects the barrier function of brain endothelial cells. Our results indicate that human brain pericytes express the major HIV‐1 receptor CD4 and co‐receptors CXCR4 and CCR5. We also determined that HIV‐1 can replicate, although at a low level, in human brain pericytes as detected by HIV‐1 p24 ELISA. Pericytes were susceptible to infection with both the X4‐tropic NL4‐3 and R5‐tropic JR‐CSF HIV‐1 strains. Moreover, HIV‐1 infection of pericytes resulted in compromised integrity of an in vitro model of the BBB. These findings indicate that human brain pericytes can be infected with HIV‐1 and suggest that infected pericytes are involved in the progression of HIV‐1‐induced CNS damage.  相似文献   

17.
Severe Clonorchis sinensis infection is a significant risk factor for malignant changes in bile ducts and surrounding liver tissues occurring as a result of direct contact with C. sinensis worms and their excretory–secretory products (ESP). However, the intrinsic molecular mechanisms involved in these processes remain obscure. To determine the effects of C. sinensis infection on protein expression in host bile duct epithelium, we examined proteomic profile changes in the human cholangiocarcinoma cell line (HuCCT1) treated with ESP at 24 h. Using a combination of 2‐DE, quantitative image and MALDI‐TOF MS analysis, we identified 83 proteins that were translationally modulated in response to ESP, among which 49 were up‐regulated and 34 down‐regulated. These proteins were classified under various biological categories, including metabolism, cell structure and architecture, proteolysis, protein modification, transport, signal transduction, and reactive oxygen species (ROS) detoxification. In particular, ESP induced the expression of redox‐regulating proteins, including peroxiredoxins (Prdx 2, 3, and 6) and thioredoxin 1 (Trx 1), possibly via intracellular ROS generation. Application of the proteomic approach to identify ESP response proteins should be a prerequisite before further investigation to clarify the molecular pathways and mechanisms involved in C. sinensis infection of host cells. J. Cell. Biochem. 108: 1376–1388, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
A novel approach on fluorescence quenching of tyrosine and l ‐tryptophan is presented for spectrofluorimetric determination of aniracetam in drug substances and products. The quenching mechanism was investigated using Stern–Volmer plots and ultraviolet spectra figures of quencher–fluorophore mixtures. Binding constant and stoichiometry were calculated using double‐log plots. The spectrofluorimetric method was optimized for the experimental conditions affecting fluorescence quenching including fluorophore concentration, diluent, and reaction time. Moreover, the pH‐rate profile of aniracetam was studied using simple kinetics and found to be stable within the pH range 5–8. Fluorescence quenching of tyrosine and l ‐tryptophan were observed on addition of aniracetam in aqueous medium at pH 5.5–6.5. Aniracetam quenched the fluorescence of tyrosine and l ‐tryptophan in the concentration range 1–20 μg/ml and 0.3–20 μg/ml, respectively, with binomial relationships between quenching values (ΔF) and aniracetam concentration. Limits of detection were found to be 0.10 μg/ml for tyrosine–aniracetam and 0.14 μg/ml for l ‐tryptophan–aniracetam. Method validation was performed as per ICH guidelines and demonstrated that the developed spectrofluorimetric method was accurate, precise, specific, and suitable for analysis of aniracetam in routine quality control laboratories. All experimental materials and solvents used are eco‐friendly, indicating that the cited spectrofluorimetric procedure is an excellent green method.  相似文献   

19.
Staphylococcus aureus is a versatile Gram‐positive pathogen that gains increasing importance due to the rapid spreading of resistances. Functional genomics technologies can provide new insights into the adaptational network of this bacterium and its response to environmental challenges. While functional genomics technologies, including proteomics, have been extensively used to study these phenomena in shake flask cultures, studies of bacteria from in vivo settings lack behind. Particularly for proteomics studies, the major bottleneck is the lack of sufficient proteomic coverage for low numbers of cells. In this study, we introduce a workflow that combines a pulse‐chase stable isotope labelling by amino acids in cell culture approach with high capacity cell sorting, on‐membrane digestion, and high‐sensitivity MS to detect and quantitatively monitor several hundred S. aureus proteins from a few million internalised bacteria. This workflow has been used in a proof‐of‐principle experiment to reveal changes in levels of proteins with a function in protection against oxidative damage and adaptation of cell wall synthesis in strain RN1HG upon internalisation by S9 human bronchial epithelial cells.  相似文献   

20.
Understanding how humans and other animals behave in response to changes in their environments is vital for predicting population dynamics and the trajectory of coupled social‐ecological systems. Here, we present a novel framework for identifying emergent social behaviours in foragers (including humans engaged in fishing or hunting) in predator–prey contexts based on the exploration difficulty and exploitation potential of a renewable natural resource. A qualitative framework is introduced that predicts when foragers should behave territorially, search collectively, act independently or switch among these states. To validate it, we derived quantitative predictions from two models of different structure: a generic mathematical model, and a lattice‐based evolutionary model emphasising exploitation and exclusion costs. These models independently identified that the exploration difficulty and exploitation potential of the natural resource controls the social behaviour of resource exploiters. Our theoretical predictions were finally compared to a diverse set of empirical cases focusing on fisheries and aquatic organisms across a range of taxa, substantiating the framework's predictions. Understanding social behaviour for given social‐ecological characteristics has important implications, particularly for the design of governance structures and regulations to move exploited systems, such as fisheries, towards sustainability. Our framework provides concrete steps in this direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号