首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The foliated layer of bivalves is constituted by platy calcite crystals, or laths, surrounded by an organic layer, and which are arranged into sheets (folia). Therefore, the foliated microstructure can be considered the calcitic analogue to nacre. In this paper, the foliated microstructure has been studied in detail using electron and X-ray diffraction techniques, together with SEM observations on naturally decalcified shells, to investigate the crystallographic organization on different length scales and to resolve among previous contradictory results. This layer is highly organized and displays a coherent crystallographic orientation. The surface of the laths of the foliated layer is constituted by calcite crystals oriented with their c-axis tilted opposite to the growth direction of the laths and one of its {101 4} rhombohedral faces looking in the growth direction. These faces are only expressed as the terminal faces of the laths, whereas the main surfaces of laths coincide with {101 8} rhombohedral faces. This arrangement was consistently found in all specimens studied, which leads us to the provisional conclusion that, unlike previous studies, there is only one possible crystallographic arrangement for the foliated layer. Future studies on other species will help to ascertain this assertion.  相似文献   

2.
The thin sheets of calcite, termed folia, that make up much of the shell of an oyster are covered by a layer of discrete globules that has been proposed to consist of agglomerations of protein and mineral. Foliar fragments, treated at 475 degrees C for 36 h to remove organic matter, were imaged by atomic force microscopy (AFM) as crystals grew on the foliar surfaces in artificial seawater at calcite supersaturations up to 52-fold. Crystals were also viewed later by scanning electron microscopy. After pyrolysis, the foliar globules persisted only as fragile remnants that were quickly washed away during AFM imaging, revealing an underlying morphology on the foliar laths of a tightly packed continuum of nanometer-scale protrusions. At intermediate supersaturations, crystal formation was seen immediately almost everywhere on these surfaces, each crystal having the same distinctive shape and orientation, even at the outset with crystals as small as a few nanometers. In contrast, nucleation did not occur readily on non-pyrolyzed foliar surfaces, and the crystals that did grow, although slowly at intermediate supersaturations, had irregular shapes. Possible crystallographic features of foliar laths are considered on the basis of the morphology of ectopic crystals and the atomic patterns of various surfaces. A model for foliar lath formation is presented that includes cycles of pulsed secretion of shell protein, removal of the protein from the mineralizing solution upon binding to mineral, and mineral growth at relatively high supersaturation over a time frame of about 1 h for each turn of the cycle.  相似文献   

3.
The calcitic columnar prisms of pteriomorphian bivalves have the crystallographic c-axis oriented perpendicular to the shell surface and the a-axes rotated without any preferential orientation. In oysters, SEM, XRD and EBSD analyses show that individual prisms initially have their a-axes randomly oriented but are able to progressively orient them parallel to those of their neighbors. This ability is apparently confined to groups, such as oysters and scallops, in which prisms are internally constituted by smaller lath-like crystal units. We have developed a competition model – not between prisms, but between the lath-like secondary units of prisms – which is based on differences in the inclination of laths relative to the shell growth surface. Units having a growth component which coincides with the growth direction protrude faster from the growth surface and out-compete those which are not favorably oriented, which reduces the overall dispersion of the a-axes of the prismatic lamella. The extent of re-alignment increases with the relative inclination of the growth surface and the length attained by the prisms. Oysters are the only group in which these two characters are pronounced enough to provide a measurable re-alignment. The proposed competition model is unprecedented in biomaterials and reveals how important crystal growth processes are in microstructure organization.  相似文献   

4.
To understand the formation mechanism of crossed lamellar structures in molluskan shells, the crystallographic structural features in the shell of a bivalve, Meretrix lamarckii, were investigated using scanning electron microscopy, electron backscattered diffraction, and transmission electron microscopy with a focused ion beam sample preparation technique. Approximately 0.5 μm-thick lamellae (the second-order units) are piled up obliquely toward the growth direction to form the first-order unit and the obliquity is inverted between adjacent units along the shell thickness direction. The first-order units originate around the center of the shell, initially growing parallel to the shell and subsequently curving toward the inner or outer surfaces. The lamellae consist of aragonite granular and columnar layers, which group together to adopt the same crystal orientation forming crystallographic units (crystallites). Multiple {1 1 0} twins are common both in the granular and columnar layers. The crystallite c-axis is parallel to the columns and is inclined at angles 0–50° from the lamellar normal (dispersing among individual lamellae), toward the shell growth direction. Probably, the directions of the a- and b-axes are random in the lamellae, showing no specific orientation.  相似文献   

5.
Electron microscope observations have been made by means of the replica method on growth processes of calcite crystals of the nacreous layer of the shell of the oyster, Crassostrea virginica. Layer formation is initiated by the secretion of a conchiolin matrix and the deposition of rounded crystal seeds on or in this material. In some areas crystal seeds are elongate and within a given area show a similar orientation, probably due to slower deposition. The seeds appear to increase in size by dendritic growth, and smaller seeds become incorporated into larger ones which come into contact to form a single layer. With further growth, crystals overlap, forming a step-like arrangement. The direction of growth is frequently different in neighboring regions. Crystal seeds deposited on crystal surfaces are usually elongate and oriented. Well developed crystals have a tabular idiomorphic form and are parallel in their growth. Rounded and irregular crystals were also observed. The crystals show reticular structure with units of the order of 100 A and striations corresponding with the rhombohedral axes of the crystals. The role of the mantle is discussed in relation to the growth patterns of crystals and shell structure.  相似文献   

6.
The foraminiferal order Rotaliida represents one third of the extant genera of foraminifers. The shells of these organisms are extensively used to decipher characteristics of marine ecosystems and global climate events.It was shown that shell calcite of benthic Rotaliida is twinned. We extend our previous work on microstructure and texture characterization of benthic Rotaliida and investigate shell calcite organization for planktonic rotaliid species. Based on results gained from electron backscattered diffraction (EBSD) and field emission electron microscopy (FESEM) imaging of chemically etched/fixed shell surfaces we show for the planktonic species Globigerinoides sacculifer, Pulleniatina obliquiloculata, Orbulina universa (belonging to the two main planktonic, the globigerinid and globorotaliid, clades): very extensive 60°-{0 0 1}-twinning of the calcite and describe a new and specific microstructure for the twinned crystals. We address twin and crystal morphology development from nucleation within a biopolymer template (POS) to outermost shell surfaces. We demonstrate that the calcite of the investigated planktonic Rotaliida forms through competitive growth. We complement the structural knowledge gained on the clade 1 and clade 2 species with EBSD results of Globigerinita glutinata and Candeina nitida shells (clade 3 planktonic species). The latter are significantly less twinned and have a different shell calcite microstructure.We demonstrate that the calcite of all rotaliid species is twinned, however, to different degrees. We discuss for the species of the three planktonic clades characteristics of the twinned calcite and of other systematic misorientations. We address the strong functionalization of foraminiferal calcite and indicate how the twinning affects biocalcite material properties.  相似文献   

7.
Electron microscope observations have been made by means of the replica method on growth processes of calcite crystals of the nacreous layer of the shell of the oyster, Crassostrea virginica. Layer formation is initiated by the secretion of a conchiolin matrix and the deposition of rounded crystal seeds on or in this material. In some areas crystal seeds are elongate and within a given area show a similar orientation, probably due to slower deposition. The seeds appear to increase in size by dendritic growth, and smaller seeds become incorporated into larger ones which come into contact to form a single layer. With further growth, crystals overlap, forming a step-like arrangement. The direction of growth is frequently different in neighboring regions. Crystal seeds deposited on crystal surfaces are usually elongate and oriented. Well developed crystals have a tabular idiomorphic form and are parallel in their growth. Rounded and irregular crystals were also observed. The crystals show reticular structure with units of the order of 100 A and striations corresponding with the rhombohedral axes of the crystals. The role of the mantle is discussed in relation to the growth patterns of crystals and shell structure.  相似文献   

8.
The initial formation and subsequent development of larval shells in marine bivalve, Crassostrea nippona were investigated using the FIB-TEM technique. Fourteen hours after fertilization (the trochophore stage), larvae form an incipient shell of 100–150 nm thick with a columnar contrast. Selected-area electron diffraction analysis showed a single-crystal aragonite pattern with the c-axis perpendicular to the shell surface. Plan-view TEM analysis suggested that the shell contains high density of {110} twins, which are the origin of the columnar contrast in the cross-sectional images. 72 h after fertilization (the veliger stage), the shell grows up to 1.2–1.4 μm thick accompanying an additional granular layer between the preexisting layer and embryo to form a distinctive two-layer structure. The granular layer is also composed of aragonite crystals sharing their c-axes perpendicular to the shell surface, but the crystals are arranged with a flexible rotation around the c-axes and not restricted solely to the {110} twin relation. No evidence to suggest the existence of amorphous calcium carbonate (ACC) was found through the observation. The well-regulated crystallographic properties found in the present sample imply initial shell formation probably via a direct deposition of crystalline aragonite.  相似文献   

9.
In the present study, we investigated the shell microstructures of the gastropod European abalone Haliotis tuberculata in order to clarify the complex spatial distribution of the different mineral phases. Our studies were carried out with a standardized methodology on thirty adult European abalone H. tuberculata (5–6 cm long) composed of 15 wild individuals and 15 individuals taken from the France Haliotis hatchery. The macroscopic (binocular) and microscopic observations coupled with Fourier Transform Infrared Spectroscopy (FTIR) and Raman vibrational analysis allowed to unambiguously detect, identify and localize calcite and aragonite. For the first time it has been shown that calcite is present in 100% of farmed and wild adult shell. The microstructural details of the calcite-aragonite interfaces were revealed by using both confocal micro-Raman mapping and Scanning Electron Microscopy (SEM) observations. Calcite zones are systematically found in the spherulitic layer without direct contact with the nacreous layer. The calcite area - nacreous layer interface is made of a thin spherulitic layer with variable thickness from a few micrometers to several millimeters.In order to contribute to a better understanding of the biomineralization process, a model explaining the hierarchical arrangement of the different phases of calcium carbonate is presented and discussed. Finally, it has been shown that these calcitic zones can be connected to each other within the shells and that their spatial distributions correspond to streaks perpendicular to the direction of length growth.  相似文献   

10.
The prisms in the shell of Mytilus edulis Linné are calcite needles. Their small size and their thin conchiolin cases distinguish them from the prisms of many other species of mollusks. These Mytilus prisms have been studied with the electron microscope. The material consisted of positive replicas of surfaces of the prismatic layer, etched with chelating agents, and of preparations of tubular cases from decalcified prisms which were compared with the conchiolin from decalcified mother-of-pearl of the same species. In the replicas, the cases appear as thin pellicles in the intervals between the prism crystals. Both the prism cases and the nacreous conchiolin, disintegrated by exposure to ultrasonic waves and sedimented on supporting films, appear in the form of tightly meshed, reticulated sheets, described as "tight pelecypod pattern" in former studies on nacreous conchiolin of Mytilus. The results show that in the shell of this species the same conchiolin structure is associated with aragonite in mother-of-pearl and with calcite in the prismatic layer.  相似文献   

11.
Cross-sections of calcitic prismatic layers in mollusk shells, cut perpendicular to growth direction, reveal well-defined polygonal shapes of individual “grains” clearly visible by light and electron microscopy. For several kinds of shells, it was shown that the average number of edges in an individual prism approaches six during the growth process. Taking into account the rhombohedral symmetry of calcite, often presented in hexagonal axes, all this led to the long-standing opinion that calcitic prisms grow along the c-axis of calcite. In this paper, using X-ray diffraction and electron backscatter diffraction (EBSD), we unambiguously show that calcitic prisms in pearl oyster Pinctada margaritifera predominantly grow perpendicular to the c-axis. The obtained results imply that the hexagon-like habitus of growing crystallites may be not necessarily connected to calcite crystallography and, therefore, other factors should be taken into consideration. We analyze this phenomenon by comparing the organic contents in Pinctada margaritifera and Pinna nobilis shells, the later revealing regular growth of calcitic prisms along the c-axis.  相似文献   

12.
The Authors have investigated the structural property of organic shell matrix from Mytilus galloprovincialis by scanning microscopy. The microscopic investigation shows differences between matrix from nacreous layer or argonite and matrix from outer layer or calcite. The first shows a "cavernous" surface; the other instead shows a "smooth" surface. The Authors conclude that probably these differences may influence the different crystallographic arrangement of biocrystals.  相似文献   

13.
The submicroscopic structure of the growing surface of the shell of the oyster, Crassostrea virginica, was studied by means of shadowed replicas. The outer edge of the prismatic region consists of a fine grained matrix enclosing crystals, the surfaces of which show a finely pebbled structure. Crystal size varies continously from 0.01 µ to 8 µ. The matrix surface shows no evidence of fibrous structure. The outer portions of the prismatic region exhibit a tile-like arrangement of large crystals separated by granular matrix 0.02 to 0.08 µ in thickness. The exposed crystal surfaces have indentations of varying form which appear as roughly parallel grooves spaced at intervals of approximately 0.3 µ. The final form of this region is believed to result from the random distribution of crystal seeds, which grow without orientation and through coalescence and growth come into contact, producing polygonal areas. The crystal arrangement of the nacreous region is one of overlapping rows of crystals in side to side contact, and with one end of each crystal free, permitting continued increase in length. Crystal angles and plane indices are presented.  相似文献   

14.
Sporangiophores of Phycomyces do not grow directly towards a horizontal beam of light, but equilibrate at an angle of about 30° above the horizontal. After describing several related observations, this paper suggests that the dioptric properties of an obliquely illuminated cylindrical lens, illustrated by a dummy cell, as well as a negative geotropic response, play major roles in determining the direction of growth. The shift of the equilibrium direction of growth towards the vertical, or a purely geotropic response, over a tenfold range of very low intensities (around 106 quanta/cm2 sec., or 10-13watt/cm2) has been studied, and an action spectrum made, measuring the quantum fluxes producing a standard intermediate equilibrium direction of growth at different wavelengths. This may differ from the action spectra at higher intensities in lacking conspicuous maxima from 370 to 490 mµ. However, in the ultraviolet it parallels the other spectra, although without showing the much higher quantum efficiency of ultraviolet relative to visible light previously noted. Possible interpretations are discussed.  相似文献   

15.
Asymmetrical bending waves can be obtained by reactivating demembranated sea urchin spermatozoa at high Ca2+ concentrations. Moving-film flash photography shows that asymmetrical flagellar bending waves are associated with premature termination of the growth of the bends in one direction (the reverse bends) while the bends in the opposite direction (the principal bends) grow for one full beat cycle, and with unequal rates of growth of principal and reverse bends. The relative proportions of these two components of asymmetry are highly variable. The increased angle in the principal bend is compensated by a decreased angle in the reverse bend, so that there is no change in mean bend angle; the wavelength and beat frequency are also independent of the degree of asymmetry. This new information is still insufficient to identify a particular mechanism for Ca2+-induced asymmetry. When a developing bend stops growing before initiation of growth of a new bend in the same direction, a modification of the sliding between tubules in the distal portion of the flagellum is required. This modification can be described as a superposition of synchronous sliding on the metachronous sliding associated with propagating bending waves. Synchronous sliding is particularly evident in highly asymmetrical flagella, but is probably not the cause of asymmetry. The control of metachronous sliding appears to be unaffected by the superposition of synchronous sliding.  相似文献   

16.
Due to its strong gradient in salinity and small temperature gradient the Mediterranean provides an ideal setting to study the impact of salinity on the incorporation of Mg into foraminiferal tests. We have investigated tests of Globorotalia inflata and Globigerina bulloides in plankton tow and core top samples from the Western Mediterranean using ICP-OES for bulk analyses and LA-ICP-MS for analyses of individual chambers in single specimens. Mg/Ca observed in G. inflata are consistent with existing calibrations, whereas G. bulloides had significantly higher Mg/Ca than predicted, particularly in core top samples from the easterly stations. Scanning Electron Microscopy and Laser Ablation ICP-MS revealed secondary overgrowths on some tests, which could explain the observed high core top Mg/Ca. We suggest that the Mediterranean intermediate and deep water supersaturated with respect to calcite cause these overgrowths and therefore increased bulk Mg/Ca. However, the different species are influenced by diagenesis to different degrees probably due to different test morphologies. Our results provide new perspectives on reported anomalously high Mg/Ca in sedimentary foraminifera and the applicability of the Mg/Ca paleothermometry in high salinity settings, by showing that (1) part of the signal is generated by precipitation of inorganic calcite on the foraminifer test due to increased calcite saturation state of the water and (2) species with high surface-to-volume shell surfaces are potentially more affected by secondary Mg-rich calcite encrustation.  相似文献   

17.
<正> The mollusk shell mobilizes calcium from environment for skeletal mineralization.This occurs through synthesizing solidsin solution in the presence of organic molecules of specific interior regions of the conch shell.The ultrastructure and microhardnessof the Hemifusus tuba conch shell living in the Huang/Bo sea area are investigated in the paper.It is shown that thecomposition and microstructure of the mollusk shell vary in different positions.The prodissoconch shell consists only of aragonitewith the crossed-lamellar microstructure.While the spiral shell and the body shell of the Hemifusus tuba conch shell arecomposed of one calcite layer and several aragonite layers.The calcite layer consists of cylindrical grains,but the aragonitelayers are crossed-lamellar ultrastructure at three size scales.The minimum structure size (the third-order lamella) is at about20 nm - 80 nm.The margin of shell aperture is only composed of calcite with cylindrical grains.This natural optimization of theshell microstructure is intimately due to the growth of the Organic matrix.At different positions the microhardness of molluscshell is different due to different crystal structures and crystal arrangements.The growth process of shells allows a constantrenewal of the material,thus enabling their functional adaptation to external environments.  相似文献   

18.
The crystallographic orientation of structural elements in skeletons of representatives of Carboniferous Syringoporicae (Auloporida) has been analysed by scanning electron microscopy (SEM), petrographic microscopy and electron backscatter diffraction (EBSD) on specimens from the Iberian Peninsula. The skeletons of the tabulate corals of the Syringoporicae consist of biogenic calcite crystals, and their microstructure is composed of lamellae, fibres and granules, or of a combination of these. Independent of the microstructure, the c‐axis is oriented towards the lumen, quasi‐perpendicular to the growth direction of the skeleton (perpendicular to the morphological axis lamellae, parallel to fibres). Most phaceloid taxa have a turbostratic distribution, as a biogenic response to prevent the cleavage of crystals. Cerioid and some phaceloid corals, whose microstructure is conditioned by wall elements, do not exhibit turbostratic distribution. Wall elements are determined by the biology of each taxon. Holacanth septal spines are composed of fibres arranged in a cone‐shape structure, sometimes clamped to the external part of the corallite and show a complex crystallography. Monacanth septal spines are spindle shaped and composed of bundles of fibres. Tabulae are composed of lamellae. Their development and crystallographic orientation depends on the position of the epithelium in each case. Shared walls are formed by a combination of the walls of two independent corallites with a median lamina, composed of granules; these have a crystallographic orientation between that of the two corallites. The growth of the microstructure is derived by a coordinated stepping mode of growth, similar to other groups of organisms such as molluscs and scleractinians. The nucleation and formation of packages of co‐oriented microcrystals suggest a growth mode similar to mineral bridges with a competitive growth mode between each crystal. The growth pattern of corallites suggests that the growth direction is divided into two main components: a horizontal growth direction towards the lumen and a vertical direction towards the top.  相似文献   

19.
Ai Kaneko 《Mycoscience》2001,42(1):75-82
Equilibrium, a concept of dynamics, is found to be applicable to the phototropic and gravitropic growth in agaric fruit-bodies. The fruit-bodies exposed to light from below grow straight downward without bending upward, and those exposed to light from obliquely below grow first downward and then upward by negative gravitropism. The fruit-bodies exposed to light from above grow upward. Fruit-bodies growing straight downward or upward do not change the direction of growth; they are in ‘equilibria’. The straight downward growth can be regarded as an ‘unstable equilibrium’ having a higher potential, and the straight upward growth as a ‘stable equilibrium’ having a lower potential. The change in the direction of growth can be explained by the change in the potential; the upward bending in fruit-bodies that have grown obliquely downward can be regarded as a ‘transition’ from the unstable equilibrium to the stable one.  相似文献   

20.
M. E. Marsh 《Protoplasma》1999,207(1-2):54-66
Summary The crystallographic and morphological configuration of the mineral ring associated with the coccoliths ofPleurochrysis carterae was determined by transmission electron microscopy and electron diffraction. Mature Pleurochrysis coccoliths consist of an oval organic base plate, a distal rim of interlocking calcite crystals, and a narrow ribbon of organic material which tethers the mineral ring to the base plate. Crystals of two distinct forms (R and V units) alternate about the rim in a quasi regular manner; their crystallographicc-axes are aligned parallel to and inclined about 63° to the coccolith plane, respectively. The mineral ring has four platelike elements: the distal-shield and outer-tube elements which form the V unit, and the proximal-shield and inner-tube elements which form the R units. The platy surfaces of both tube elements correspond to the common (10 4) rhombohedral faces of calcite, and the plates of the proximal-shield element are prismatic (2 0) faces. The plates of the distal-shield element are rather curved and their orientation does not correspond to a favorable calcite face; however, for convenience they are described as approximately ( 108) faces, faces which rarely, if ever, develop in inorganic sources of calcite. During coccolith development the earliest habits observed for both V and R units correspond to rectangular parallelepipeds. Outgrowth from the initial V unit begins by expansion of (10 4) faces which form the platy surfaces of the outer-tube element. Throughout this period of development the mineral ring is flexible, at least in an isolated state. Subsequent outgrowth of the inner-tube and proximal-shield elements from the initial R unit produces a rigid interlocking ring. The unusual ( 108) faces of the distal-shield element develop after the crystals are locked in place. Organic structures in intimate association with the mineral phase during its nucleation and growth include the coccolith ribbon, the calcium-polyanion particles, and the membrane of the coccolith vesicle. These structures are described in reference to their putative functions in regulating the development of V and R units.Abbreviation PS polysaccharide  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号