首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined chemical regeneration of free oligosaccharides from their fluorescent derivatives prepared by reductive amination with various aromatic amines. Maltose derivatives of ethyl 4-aminobenzoate (p-ABEE), 2-aminobenzonitrile (o-ABN), 4-aminobenzonitrile (p-ABN), 7-amino-4-methylcoumarin (AMC), 2-aminobenzoic acid (o-ABA), 2-aminobenzamide (o-ABAD), 2-aminopyridine (AP), and 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) were incubated at 30 degrees C with an aqueous solution of hydrogen peroxide/acetic acid. Recoveries of maltose from p-ABEE, p-ABN, and AMC derivatives were fairly good and gave approximately 90% of maltose. Recoveries of maltose from its o-substituted aniline (o-ABA, o-ABAD, and o-ABN) derivatives were 5-40%, but maltose was unrecoverable from AP and ANTS derivatives. Nevertheless, prior treatment of an AP derivative with cyanogen bromide enabled the regeneration of maltose in high yields. As an application, p-ABEE-labeled N-glycans from some glycoproteins separated on an amide column were identified by converting peak components to their AP derivatives via free saccharides and following mapping by reversed-phase chromatography.  相似文献   

2.
Sensitive differential proteomic analysis is challenging and often limited by distinct labeling or tagging strategies. In this study, we have examined the sensitivity, linearity, and photophysical properties of novel protein labeling DY‐maleimide dyes (DY‐505‐MAL, DY‐555‐MAL and DY‐635‐MAL). All MS compatible DY‐maleimide dyes exhibited excellent emission spectra, high sensitivity, and high linearity, when applied to standard 1‐DE protein analysis. Correspondingly, 2‐DE analysis of DY‐635‐MAL or DY‐505‐MAL maximal‐labeled human keratinocyte proteins displayed remarkably high sensitivity. Compared with a standard fluorescent protein stain, DY‐635‐MAL or DY‐505‐MAL 2‐DE analysis demonstrated equally high spot quality with an overall increase in the number of spots detectable (up to threefold higher;>1000 spots/gel). However, as determined with a FLA‐5100 imaging system, comparative MultiGauge, and Delta2D analysis, not all DY‐maleimide dyes possessed DIGE compatible fluorescent emission properties. However, DY‐505‐MAL and DY‐635‐MAL were found to be suitable for more complex, time and gel intensive, focused multiplexing analyses. Notably – as demonstrated with allergen‐stimulated human skin proteins – defined, singular DY‐maleimide dye protein labeling (SDPL) allows high quality, time saving, simple, and reliable differential proteomic examination.  相似文献   

3.
Broberg A 《Carbohydrate research》2007,342(11):1462-1469
Milk oligosaccharides derivatized by reductive amination with benzylamine followed by N,N-dimethylation (DMBA-oligosaccharides), were analyzed by high-performance liquid chromatography/electrospray ionization ion-trap mass spectrometry (HPLC/ESI-ITMS). Separation of DMBA-oligosaccharides was achieved on a graphitized carbon column eluted with aqueous acetonitrile and the DMBA-oligosaccharides were detected by positive-ion mode ESI-ITMS allowing sample amounts down to approximately 30fmol of single DMBA-oligosaccharides injected on the HPLC column. MS/MS operation of the mass spectrometer resulted in the detection of diagnostic fragments, mainly belonging to the Y-series, allowing differentiation between isomeric milk oligosaccharides. HPLC/ESI-ITMS/MS/MS experiments indicated the migration of fucose residues of the DMBA milk oligosaccharides to the modified reducing end glucose residue during analysis, a migration previously only observed for proton adduct ions.  相似文献   

4.
The main goal of many proteomics experiments is an accurate and rapid quantification and identification of regulated proteins in complex biological samples. The bottleneck in quantitative proteomics remains the availability of efficient software to evaluate and quantify the tremendous amount of mass spectral data acquired during a proteomics project. A new software suite, ICPLQuant, has been developed to accurately quantify isotope‐coded protein label (ICPL)‐labeled peptides on the MS level during LC‐MALDI and peptide mass fingerprint experiments. The tool is able to generate a list of differentially regulated peptide precursors for subsequent MS/MS experiments, minimizing time‐consuming acquisition and interpretation of MS/MS data. ICPLQuant is based on two independent units. Unit 1 performs ICPL multiplex detection and quantification and proposes peptides to be identified by MS/MS. Unit 2 combines MASCOT MS/MS protein identification with the quantitative data and produces a protein/peptide list with all the relevant information accessible for further data mining. The accuracy of quantification, selection of peptides for MS/MS‐identification and the automated output of a protein list of regulated proteins are demonstrated by the comparative analysis of four different mixtures of three proteins (Ovalbumin, Horseradish Peroxidase and Rabbit Albumin) spiked into the complex protein background of the DGPF Proteome Marker.  相似文献   

5.
Carbazole and its derivatives have been widely utilized as a functional building block in the fabrication of the organic medicine, pesticides, materials, etc., because of their excellent solubility, stability and biological activity. In this paper, 1‐(5‐carboxypentyl)‐4‐(2‐(N‐ethyl‐carbazole‐3‐yl) vinyl) pyridinium bromide with a large Stokes shift was synthesized and characterized by 1H NMR and MS. The UV/vis absorption and fluorescence spectra in different solvents and at different pH values were investigated preliminarily. The photostability and thermostability were also studied and the results showed that the compound was stable. The compound was also used to label bovine serum albumin (BSA) and calf thymus (ct)DNA. The results showed that the fluorescence intensity is enhanced when labeling with BSA and the binding ability is stronger than ctDNA, making it may be used as a biological probe. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A whole cell biotransformation system for reductive amination has been studied in recombinant Escherichia coli cells. Reductive amination of 2-keto-3-methylvalerate to l-isoleucine by a two-enzyme-cascade was achieved by overproduction of endogenous l-alanine dependent transaminase AvtA and heterologous l-alanine dehydrogenase from Bacillus subtilis in recombinant E. coli. Up to 100 mM l-isoleucine were produced from 100 mM 2-keto-3-methylvalerate and 100 mM ammonium sulfate. Regeneration of NADH as cofactor in the whole cell system was driven by glucose catabolism. The effects of defined gene deletions in the central carbon metabolism on biotransformation were tested. Strains lacking the NuoG subunit of NADH:ubiquinone oxidoreductase (complex I) or aceA encoding the glyoxylate cycle enzyme isocitrate lyase exhibited increased biotransformation rates.  相似文献   

7.
A highly efficient enantioselective α‐amination of branched aldehydes catalyzed by chiral imide monosubstituted 1,2‐diamine derivatives was reported to afford the quaternary stereogenic centers in excellent yields (up to 99%) and enantioselectivities (up to 97% ee). Chirality 25:668–672, 2013. © 2013 Wiley Periodicals, Inc  相似文献   

8.
A method for determination of a molar-based distribution of A, B and C chains of amylopectin was developed. Labeling with fluorescent 2-aminopyridine was proportional to the number-average degree of polymerization (dp(n)) of the chains in the range of 6-440. Number-average chain lengths (cl(n)) of amylopectins from six different plant sources (rice, maize, wheat, potato, sweet potato and yam) determined by the labeling method were in good agreement with values obtained by determination of non-reducing residues. The molar-based distributions were polymodal (A, B(1) and B(2)+B(3) fractions) and characteristic to botanical sources. Amylopectins from starches with A-crystalline type had higher amount of A+B(1) chains (90-93% by mole) than starches with B-type (68-87%). Molar ratios of (A+B(1))/(B(2)+B(3)) were 8.9-12.9 for the A-type starches and 2.1-6.5 for the B-type starches, suggesting that amylopectins of A-type starches had 1.5-2 times more branches per cluster than B-type. The distributions of C chains, except for amylomaize, showed a broad, asymmetrical profile from dp approximately 10 to approximately 130 with a peak at dp approximately 40 and were very similar among botanical sources, suggesting that the biosynthetic process for C chains is similar in different plant species.  相似文献   

9.
High levels (μM) of beta amyloid (Aβ) oligomers are known to trigger neurotoxic effects, leading to synaptic impairment, behavioral deficits, and apoptotic cell death. The hydrophobic C‐terminal domain of Aβ, together with sequences critical for oligomer formation, is essential for this neurotoxicity. However, Aβ at low levels (pM‐nM) has been shown to function as a positive neuromodulator and this activity resides in the hydrophilic N‐terminal domain of Aβ. An N‐terminal Aβ fragment (1–15/16), found in cerebrospinal fluid, was also shown to be a highly active neuromodulator and to reverse Aβ‐induced impairments of long‐term potentiation. Here, we show the impact of this N‐terminal Aβ fragment and a shorter hexapeptide core sequence in the Aβ fragment (Aβcore: 10–15) to protect or reverse Aβ‐induced neuronal toxicity, fear memory deficits and apoptotic death. The neuroprotective effects of the N‐terminal Aβ fragment and Aβcore on Aβ‐induced changes in mitochondrial function, oxidative stress, and apoptotic neuronal death were demonstrated via mitochondrial membrane potential, live reactive oxygen species, DNA fragmentation and cell survival assays using a model neuroblastoma cell line (differentiated NG108‐15) and mouse hippocampal neuron cultures. The protective action of the N‐terminal Aβ fragment and Aβcore against spatial memory processing deficits in amyloid precursor protein/PSEN1 (5XFAD) mice was demonstrated in contextual fear conditioning. Stabilized derivatives of the N‐terminal Aβcore were also shown to be fully protective against Aβ‐triggered oxidative stress. Together, these findings indicate an endogenous neuroprotective role for the N‐terminal Aβ fragment, while active stabilized N‐terminal Aβcore derivatives offer the potential for therapeutic application.

  相似文献   

10.
The analysis of cellular subproteomes by 2DE is hampered by the difficulty of aligning gel images from samples that have very different protein composition. Here, we present a sensitive and cost‐effective fluorescent labeling method for analyzing protein samples that is not dependent on their composition. The alignment is guided by inclusion of a complex mixture of proteins that is co‐run with the sample. Maleimide‐conjugated fluorescent dyes Dy‐560 and Dy‐635 are used to label the cysteine residues of the sample of interest and the alignment standard, respectively. The two differently labeled mixtures are then combined and separated on a 2D gel and, after selective fluorescence detection, an unsupervised image registration process is used to align the protein patters. In a pilot study, this protocol significantly improved the accuracy of alignment of nuclear proteins with total cellular proteins.  相似文献   

11.
Modified internucleotide linkage featuring the C3′‐O‐P‐CH2‐O‐C4″ phosphonate grouping as an isosteric alternative to the phosphodiester C3′‐O‐P‐O‐CH2‐C4″ bond was studied in order to learn more on its stereochemical arrangement, which we showed earlier to be of prime importance for the properties of the respective oligonucleotide analogues. Two approaches were pursued: First, the attempt to prepare the model dinucleoside phosphonate with 13C‐labeled CH2 group present in the modified internucleotide linkage that would allow for a more detailed evaluation of the linkage conformation by NMR spectroscopy. Second, the use of ab initio calculations along with molecular dynamics (MD) simulations in order to observe the most populated conformations and specify main structural elements governing the conformational preferences. To deal with the former aim, a novel synthesis of key labeled reagent (CH3O)2P(O)13CH2OH for dimer preparation had to be elaborated using aqueous 13C‐formaldehyde. The results from both approaches were compared and found consistent. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 514–529, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

12.
Quantitative glycomics represents an actively expanding research field ranging from the discovery of disease‐associated glycan alterations to the quantitative characterization of N‐glycans on therapeutic proteins. Commonly used analytical platforms for comparative relative quantitation of complex glycan samples include MALDI‐TOF‐MS or chromatographic glycan profiling with subsequent data alignment and statistical evaluation. Limitations of such approaches include run‐to‐run technical variation and the potential introduction of subjectivity during data processing. Here, we introduce an offline 2D LC‐MSE workflow for the fractionation and relative quantitation of twoplex isotopically labeled N‐linked oligosaccharides using neutral 12C6 and 13C6 aniline (Δmass = 6 Da). Additional linkage‐specific derivatization of sialic acids using 4‐(4,6‐dimethoxy‐1,3,5‐trizain‐2‐yl)‐4‐methylmorpholinium chloride offered simultaneous and advanced in‐depth structural characterization. The potential of the method was demonstrated for the differential analysis of structurally defined N‐glycans released from serum proteins of patients diagnosed with various stages of colorectal cancer. The described twoplex 12C6/13C6 aniline 2D LC‐MS platform is ideally suited for differential glycomic analysis of structurally complex N‐glycan pools due to combination and analysis of samples in a single LC‐MS injection and the associated minimization in technical variation.  相似文献   

13.
Two somatostatin analogues, [99mTc]Demotide and [99mTc]Demotate 4, were compared with [99mTc]Demotate 1, a previously reported somatostatin receptor subtype 2 (sst2) targeting tracer. Conjugates were prepared by coupling an open‐chain tetraamine chelator to D ‐Phe1 of [Tyr3]‐octreotide or [Tyr3]‐octreotate, respectively, via a p‐benzylaminodiglycolic acid spacer adopting solid‐phase peptide synthesis techniques. Peptide conjugates were collected in a highly pure form after chromatographic purification. Eventually, [99mTc]Demotide and [99mTc]Demotate 4 were obtained in ~1 Ci/µmol specific activity and >96% purity after labeling under alkaline conditions. Demotide and Demotate 4 exhibited similar high binding affinities for the sst2 expressed in AR4‐2J cells with IC50 values 0.16 and 0.10 nM, respectively. The (radio)metallated analogues [99mTc]Demotide and [99mTc]Demotate 4 showed equally high affinities to the sst2 during saturation binding assays in AR4‐2J cell membranes (Kds 0.08 and 0.07 nM, respectively). During incubation at 37 °C with AR4‐2J cells, the radiopeptides internalized effectively via a receptor‐mediated process, with [99mTc]Demotate 4 exhibiting a faster internalization rate than [99mTc]Demotide. After injection in athymic mice bearing sst2‐expressing AR4‐2J tumors, the radiotracers showed high and specific uptake in the tumor (>25%ID/g at 1 h) and in the sst2–positive organs. However, both [99mTc]Demotide and [99mTc]Demotate 4 showed unfavorably higher background activity, especially in the abdomen, in comparison to [99mTc]Demotate 1 and are, therefore, less suited than [99mTc]Demotate 1 for sst2‐targeted tumor imaging in man. Copyright © 2005 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
The ability to metabolically label proteins with 35S-methionine is critical for the analysis of protein synthesis and turnover. Despite the importance of this approach, however, efficient labeling of proteins in vivo is often limited by a low number of available methionine residues, or by deleterious side-effects associated with protein overexpression. To overcome these limitations, we have created a methionine-rich variant of the widely used HA tag, called HAM, for use with ectopically expressed proteins. Here we describe the development of a series of vectors, and corresponding antisera, for the expression and detection of HAM-tagged proteins in mammalian cells. We show that the HAM tag dramatically improves the sensitivity of 35S-methionine labeling, and permits the analysis of Myc oncoprotein turnover even when HAM-tagged Myc is expressed at levels comparable to that of the endogenous protein. Because of the improved sensitivity provided by the HAM tag, the vectors and antisera described here should be useful for the analysis of protein synthesis and destruction at physiological levels of protein expression.  相似文献   

15.
We present a generic method for the site‐specific and differential labeling of multiple cysteine residues in one protein. Phenyl arsenic oxide has been employed as a protecting group of two closely spaced thiols, allowing first labeling of a single thiol. Subsequently, the protecting group is removed, making available a reactive dithiol site for labeling with a second probe. For proof‐of‐principle, single and triple Cys mutants of the sulphate binding protein of an ABC transporter were constructed. The closely spaced thiols were engineered on the basis of the crystal structure of the protein and placed in different types of secondary structure elements and at different spacing. We show that phenyl arsenic oxide is a good protecting group for thiols spaced 6.3–7.3 Å. Proteins were labeled with two different fluorescent labels and the labeling ratios were determined with UV‐Vis spectroscopy and MALDI‐Tof mass spectrometry. The average labeling efficiency was ~80% for the single thiol and 65–90% for the dithiol site.  相似文献   

16.
17.
A method for the efficient decontamination of aluminium oxide ceramic 2‐DE focusing trays from β‐amyloid peptides (Aβ) is reported. As these contaminations were resistant to the standard cleaning procedures, additional harsh cleaning steps were necessary for their efficient removal. Our observations suggest that specific surface properties affect the degree of adsorption of the Aβ‐peptides. “Surface catalysed amyloid aggregation” in the aluminium oxide ceramic trays is proposed as a possible underlying mechanism for the occurrence of proteinase K‐resistant forms of Aβ.  相似文献   

18.
Various enzyme reactors and online enzyme digestion strategies have been developed in recent years. These reactors greatly enhanced the detection sensitivity and proteome coverage in qualitative proteomics. However, these devices have higher rates of miscleavage in protein digestion. Therefore, we investigated the effect of online enzyme digestion on the quantification accuracy of quantitative proteomics using chemical or metabolic isotope labeling approaches. The incomplete digestion would introduce some unexpected variations in comparative quantification when the samples are digested and then chemically isotope labeled in different aliquots. Even when identical protein aliquots are processed on these devices using post‐digestion chemical isotope labeling and the CVs of the ratios controlled to less than 50% in replicate analyses, about 10% of the quantified proteins have a ratio greater than two‐fold, whereas in theory the ratio is 1:1. Interestingly, the incomplete digestion with enzyme reactor is not a problem when metabolic isotope labeling samples were processed because the proteins are isotopically labeled in vivo prior to their simultaneous digestion within the reactor. Our results also demonstrated that both high quantification accuracy and high proteome coverage can be achieved in comparative proteome quantification using online enzyme digestion even when a limited amount of metabolic isotope labeling samples is used (1683 proteins comparatively quantified from 105 Hela cells).  相似文献   

19.
We report a new protecting agent ( 1 , Npys‐OPh(pF)) for 3‐nitro‐2‐pyridine (Npy) sulfenylation of amino, hydroxy, and thiol functional groups. Several Npys phenoxides were synthesized from Npys chloride (Npys‐Cl) and phenols in the presence of base in 1‐step reaction, and their ability for Npy‐sulfenylation was evaluated. As a result, 1 was selected as a new Npy‐sulfenylation agent with advantages including improved physicochemical stability, more controllable reactivity, and easier handling than the conventional protecting agent Npys‐Cl.  相似文献   

20.
Many β‐galactosidases show large differences in galacto‐oligosaccharide (GOS) production and lactose hydrolysis. In this study, a kinetic model is developed in which the effect of lactose, glucose, galactose, and oligosaccharides on the oNPG converting activity of various β‐galactosidases is quantified. The use of oNPG as a competing substrate to lactose yields more information than can be obtained by examining only the conversion of lactose itself. The reaction rate with lactose or oligosaccharides as substrate relative to that with water as acceptor is much higher for the β‐galactosidase of Bacillus circulans than the β‐galactosidases of Aspergillus oryzae and Kluyveromyces lactis. In addition, the β‐galactosidase of B.circulans has a high reaction rate with galactose as acceptor, in contrast to those of A. oryzae and K. lactis. The latter two are strongly inhibited by galactose. These differences explain why β‐galactosidase of B. circulans gives higher yields in GOS production than other β‐galactosidases. Many of the reaction rate constants for the β‐galactosidase isoforms of B. circulans increase with increasing molecular weight of the isoform. This indicates that the largest isoform β‐gal‐A is most active in GOS production. However, its hydrolysis rate is also much higher than that of the other isoforms, which results in a faster hydrolysis of oligosaccharides as well. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:38–47, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号