首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions of methylmercury (CH(3)HgCl) with non-energized mitochondria from rat liver (non-respiring mitochondria) have been investigated in this paper. It has been shown that CH(3)HgCl induces swelling in mitochondria suspended in a sucrose medium. Swelling has also been induced by detergent compounds and by phenylarsine, a chemical compound which induces opening of the permeant transition pore (MTP). Opening of the MTP is inhibited by means of cyclosporine A. Results indicate that the swelling induced by CH(3)HgCl, as in the case of phenylarsine, is inhibited by cyclosporine A and Mg(2+), while swelling induced by detergent compounds is not cyclosporine sensitive. This comparison suggests that CH(3)HgCl induces opening of a permeability transition pore (MTP). Since the opening of an MTP induces cell death, this interaction with MTP could be one of the causes of toxicity of CH(3)HgCl.  相似文献   

2.
Renal tubular cell injury induced by oxidative stress via mitochondrial collapse is thought to be the initial process of renal calcium crystallization. Mitochondrial collapse is generally caused by mitochondrial permeability transition pore (mPTP) opening, which can be blocked by cyclosporine A (CsA). Definitive evidence for the involvement of mPTP opening in the initial process of renal calcium crystallization, however, is lacking. In this study, we examined the physiological role of mPTP opening in renal calcium crystallization in vitro and in vivo. In the in vitro study, cultured renal tubular cells were exposed to calcium oxalate monohydrate (COM) crystals and treated with CsA (2 μM). COM crystals induced depolarization of the mitochondrial membrane potential and generated oxidative stress as evaluated by Cu-Zn SOD and 4-HNE. Furthermore, the expression of cytochrome c and cleaved caspase 3 was increased and these effects were prevented by CsA. In the in vivo study, Sprague-Dawley rats were administered 1% ethylene glycol (EG) to generate a rat kidney stone model and then treated with CsA (2.5, 5.0, and 10.0 mg/kg/day) for 14 days. EG administration induced renal calcium crystallization, which was prevented by CsA. Mitochondrial collapse was demonstrated by transmission electron microscopy, and oxidative stress was evaluated by measuring Cu-Zn SOD, MDA, and 8-OHdG generated by EG administration, all of which were prevented by CsA. Collectively, our results provide compelling evidence for a role of mPTP opening and its associated mitochondrial collapse, oxidative stress, and activation of the apoptotic pathway in the initial process of renal calcium crystallization.  相似文献   

3.
In this work the effect of the neurotoxic amino acid sequence, A25–35, on brain mitochondrial permeability transition pore (PTP) was studied. For the purpose, the mitochondrial transmembrane potential (m), mitochondrial respiration and the calcium fluxes were examined. It was observed that A25–35, in the presence of Ca2+, decreased the m, the capacity of brain mitochondria to accumulate calcium and led to a complete uncoupling of the respiration. However, the reverse sequence of the peptide A25–35 (A35–25) did not promote the PTP. The alterations promoted by A35–25 and/or Ca2+ could be reversed when Ca2+ was removed by EGTA or when ADP plus oligomycin were present. The pre-treatment with CsA or ADP plus oligomycin prevented the m drop and preserved the capacity of mitochondria to accumulate Ca2+. These results suggest that A25–35 can promote the PTP induced by Ca2+.  相似文献   

4.
Imaging the permeability pore transition in single mitochondria.   总被引:11,自引:0,他引:11       下载免费PDF全文
In mitochondria the opening of a large proteinaceous pore, the "mitochondrial permeability transition pore" (MTP), is known to occur under conditions of oxidative stress and matrix calcium overload. MTP opening and the resulting cellular energy deprivation have been implicated in processes such as hypoxic cell damage, apoptosis, and neuronal excitotoxicity. Membrane potential (delta psi(m)) in single isolated heart mitochondria was measured by confocal microscopy with a voltage-sensitive fluorescent dye. Measurements in mitochondrial populations revealed a gradual loss of delta psi(m) due to the light-induced generation of free radicals. In contrast, the depolarization in individual mitochondria was fast, sometimes causing marked oscillations of delta psi(m). Rapid depolarizations were accompanied by an increased permeability of the inner mitochondrial membrane to matrix-entrapped calcein (approximately 620 Da), indicating the opening of a large membrane pore. The MTP inhibitor cyclosporin A significantly stabilized delta psi(m) in single mitochondria, thereby slowing the voltage decay in averaged recordings. We conclude that the spontaneous depolarizations were caused by repeated stochastic openings and closings of the transition pore. The data demonstrate a much more dynamic regulation of membrane permeability at the level of a single organelle than predicted from ensemble behavior of mitochondrial populations.  相似文献   

5.
Amyloid beta (Aβ) plays a critical role in the pathophysiology of Alzheimer's disease. Increasing evidence indicates mitochondria as an important target of Aβ toxicity; however, the effects of Aβ toxicity on mitochondria have not yet been fully elucidated. Recent biochemical studies in vivo and in vitro implicate mitochondrial permeability transition pore (mPTP) formation involvement in Aβ-mediated mitochondrial dysfunction. mPTP formation results in severe mitochondrial dysfunction such as reactive oxygen species (ROS) generation, mitochondrial membrane potential dissipation, intracellular calcium perturbation, decrease in mitochondrial respiration, release of pro-apoptotic factors and eventually cell death. Cyclophilin D (CypD) is one of the more well-known mPTP components and recent findings reveal that Aβ has significant impact on CypD-mediated mPTP formation. In this review, the role of Aβ in the formation of mPTP and the potential of mPTP inhibition as a therapeutic strategy in AD treatment are examined.  相似文献   

6.
Effects of Tl+ were studied in experiments with isolated rat heart mitochondria (RHM) injected into 400 mOsm medium containing TlNO3 and a nitrate salt (KNO3 or NH4NO3) or TlNO3 and sucrose. Tl+ increased permeability of the inner membrane of the RHM to K+ and H+. This manifested as an increase of the non-energized RHM swelling, in the order of sucrose < K+ < NH4 +, respectively. After succinate administration, the swollen RHM contracted. The Tl+-induced opening of the mitochondrial permeability pore (MPTP) in Ca2+-loaded rat heart mitochondria increased both the swelling and the inner membrane potential dissipation, as well as decreased basal state and 2,4-dinitrophenol-stimulated respiration. These effects of Tl+ were suppressed by the MPTP inhibitors (cyclosporine A, ADP, bongkrekic acid, and n-ethylmaleimide), activated in the presence of the MPTP inducer (carboxyatractyloside) or mitoKATP inhibitor (5-hydroxydecanoate), but were not altered in the presence of mitoKATP agonists (diazoxide or pinacidil). We suggest that the greater sensitivity of heart and striated muscles, versus liver, to thallium salts in vivo can result in more vigorous Tl+ effects on muscle cell mitochondria.  相似文献   

7.
The purpose of this study was to determine whether regular exercise (treadmill running, 10 wk) alters the susceptibility of rat isolated heart mitochondria to Ca(2+)-induced permeability transition pore (PTP) opening and whether this could be associated with changes in the modulation of PTP opening by selected physiological effectors. Basal leak-driven and ADP-stimulated respiration in the presence of substrates for complex I, II, and IV were not affected by training. Fluorimetric studies revealed that in the control and exercise-trained groups, the amount of Ca(2+) required to trigger PTP opening was greater in the presence of complex II vs. I substrates (230 +/- 12 vs. 134 +/- 7 nmol Ca(2+)/mg protein, P < 0.01; pooled average of control and trained groups). In addition, with a substrate feeding the complex II, training increased by 45% (P < 0.01) the amount of Ca(2+) required to trigger PTP opening both in the presence and absence of the PTP inhibitor cyclosporin A. However, membrane potential, reactive oxygen species production, NAD(P)H ratio, and Ca(2+) uptake kinetics were not different in mitochondria from both groups. Together, these results suggest the existence of a substrate-specific regulation of the PTP in heart mitochondria and suggest that regular exercise results in a reduced sensitivity to Ca(2+)-induced PTP opening in presence of complex II substrates.  相似文献   

8.
Rapid entry of Ca(2+) or Zn(2+) kills neurons. Mitochondria are major sites of Ca(2+)-dependent toxicity. This study examines Zn(2+)-initiated mitochondrial cell death signaling. 10 nm Zn(2+) induced acute swelling of isolated mitochondria, which was much greater than that induced by higher Ca(2+) levels. Zn(2+) entry into mitochondria was dependent upon the Ca(2+) uniporter, and the consequent swelling resulted from opening of the mitochondrial permeability transition pore. Confocal imaging of intact neurons revealed entry of Zn(2+) (with Ca(2+)) to cause pronounced mitochondrial swelling, which was far greater than that induced by Ca(2+) entry alone. Further experiments compared the abilities of Zn(2+) and Ca(2+) to induce mitochondrial release of cytochrome c (Cyt-c) or apoptosis-inducing factor. In isolated mitochondria, 10 nm Zn(2+) exposures induced Cyt-c release. Induction of Zn(2+) entry into cortical neurons resulted in distinct increases in cytosolic Cyt-c immunolabeling and in cytosolic and nuclear apoptosis-inducing factor labeling within 60 min. In comparison, higher absolute [Ca(2+)](i) rises were less effective in inducing release of these factors. Addition of the mitochondrial permeability transition pore inhibitors cyclosporin A and bongkrekic acid decreased Zn(2+)-dependent release of the factors and attenuated neuronal cell death as assessed by trypan blue staining 5-6 h after the exposures.  相似文献   

9.
目的:研究心功能自然衰退过程中线拉体通透性转换孔(MPTP)开放改变规律及其相关机制.方法:检测不同月龄(3、6、9、12月龄)SD大鼠左室心功能;分离各月龄大鼠心肌线粒体,检测MPTP开放改变、线粒体Mn-SOD活性.结果:9月龄和12月龄大鼠心功能同3月龄大鼠相比均出现明显减退,表现为左室收缩压LVSP减小(P<0...  相似文献   

10.
Mitochondrial permeability transition pore (mPTP) plays a central role in alterations of mitochondrial structure and function leading to neuronal injury relevant to aging and neurodegenerative diseases including Alzheimer's disease (AD). mPTP putatively consists of the voltage-dependent anion channel (VDAC), the adenine nucleotide translocator (ANT) and cyclophilin D (CypD). Reactive oxygen species (ROS) increase intra-cellular calcium and enhance the formation of mPTP that leads to neuronal cell death in AD. CypD-dependent mPTP can play a crucial role in ischemia/reperfusion injury. The interaction of amyloid beta peptide (Aβ) with CypD potentiates mitochondrial and neuronal perturbation. This interaction triggers the formation of mPTP, resulting in decreased mitochondrial membrane potential, impaired mitochondrial respiration function, increased oxidative stress, release of cytochrome c, and impaired axonal mitochondrial transport. Thus, the CypD-dependent mPTP is directly linked to the cellular and synaptic perturbations observed in the pathogenesis of AD. Designing small molecules to block this interaction would lessen the effects of Aβ neurotoxicity. This review summarizes the recent progress on mPTP and its potential therapeutic target for neurodegenerative diseases including AD. This article is part of a Special Issue entitled: Misfolded Proteins, Mitochondrial Dysfunction, and Neurodegenerative Diseases.  相似文献   

11.
Plant mitochondria are remarkable with respect to their content in foreign, alien and plasmid-like DNA, raising the question of the transfer of this information into the organelles. We demonstrate the existence of an active, transmembrane potential-dependent mechanism of DNA uptake into plant mitochondria. The process is restricted to double-strand DNA, but has no obvious sequence specificity. It is most efficient with linear fragments up to a few kilobase pairs. When containing appropriate information, imported sequences are transcribed within the organelles. The uptake likely involves the voltage-dependent anion channel and the adenine nucleotide translocator, i.e. the core components of the mitochondrial permeability transition pore complex in animal cells, but it does not rely on known mitochondrial membrane permeabilization processes. We conclude that DNA import into plant mitochondria might represent a physiological phenomenon with some functional relevance.  相似文献   

12.
We have studied the properties of the permeability transition pore (PTP) in mitochondria from the liver of mice where the Ppif gene encoding for mitochondrial Cyclophilin D (CyP-D) had been inactivated. Mitochondria from Ppif-/- mice had no CyP-D and displayed a striking desensitization of the PTP to Ca2+, in that pore opening required about twice the Ca2+ load necessary to open the pore in strain-matched, wild-type mitochondria. Mitochondria lacking CyP-D were insensitive to Cyclosporin A (CsA), which increased the Ca2+ retention capacity only in mitochondria from wild-type mice. The PTP response to ubiquinone 0, depolarization, pH, adenine nucleotides, and thiol oxidants was similar in mitochondria from wild-type and Ppif-/- mice. These experiments demonstrate that (i) the PTP can form and open in the absence of CyP-D, (ii) that CyP-D represents the target for PTP inhibition by CsA, and (iii) that CyP-D modulates the sensitivity of the PTP to Ca2+ but not its regulation by the proton electrochemical gradient, adenine nucleotides, and oxidative stress. These results have major implications for our current understanding of the PTP and its modulation in vitro and in vivo.  相似文献   

13.
目的:通过观察在体大鼠肝部分缺血再灌注损伤后脑线粒体游离钙、线粒体转运通道( mitochondrial permeability transition pore ,MPTP)及外周血中S-100β蛋白含量的变化,明确异氟烷预处理对大鼠肝部分缺血再灌注时脑损伤是否具有保护作用及可能的机制。方法 SD大鼠75只随机分成假手术组( S组);缺血再灌注组( I/R组):肝缺血60 min,再灌注120 min;异氟烷预处理组( ISO组):肝I/R前60 min ISO预处理30 min,后用空气洗脱30 min:CsA+ISO组,CsA50 mg/kg静脉内注射,30 min后同ISO组;CsA组,I/R前30 min CsA50 mg/kg静脉内注射。再灌注24 h迅速断头取前脑,分离线粒体进行线粒体游离钙、MPTP含量检测,各组分别于缺血前及再灌注120 min后抽取静脉血采用双抗体夹心-ELAISA 法测定 S-100β蛋白含量。结果 I/R组(287.32±26.17)线粒体游离Ca2+浓度明显增加,高于S组(198.54±21.02)和ISO组(209.74±29.49)(P <0.05);CsA+ISO(267.31±37.52)明显高于ISO组( P <0.05);CsA(288.63±23.15)组与I/R组间比较差异无显著意义( P <0.05);I/R组(1.73±0.24)的ΔS与S组(2.36±0.35)和ISO 组(2.11±0.32)相比明显减少(P <0.05),既MPTP大量开放,而后两组的差异无统计学意义(P <0.05);I/R组与CsA+ISO组(1.72±0.34)和CsA组(1.77±0.35)△S之间差异无统计学意义(P <0.05);CsA+ISO组的ΔS值与ISO组相比明显降低(P <0.05)。外周血液S-100β蛋白I/R组明显高于S组和ISO组(P <0.05);CsA+ISO组与ISO组比较显著升高(P <0.05),I/R组,CsA+ISO组和CsA组与缺血前比较明显升高( P <0.05),缺血前S-100β蛋白含量五组无显著性差异( P <0.05)。结论大鼠肝部分缺血再灌注后对脑组织造成了一定程度损伤,而异氟烷预处理对此损伤具有一定保护作用;其作用的机制可能与异氟烷抑制MPTP开放,降低线粒体游离Ca2+浓度,防止了线粒体Ca2+超载有关。  相似文献   

14.
15.
Among the neurodegenerative diseases (ND), Parkinson’s disease affects 6.3 million people worldwide characterized by the progressive loss of dopaminergic neurons in substantia nigra. The mitochondrial permeability transition pore (mtPTP) is a non-selective voltage-dependent mitochondrial channel whose opening modifies the permeability properties of the mitochondrial inner membrane. It is recognized as a potent pharmacological target for diseases associated with mitochondrial dysfunction and excessive cell death including ND such as Parkinson’s disease (PD). Imbalance in Ca2+ concentration, change in mitochondrial membrane potential, overproduction of reactive oxygen species (ROS), or mutation in mitochondrial genome has been implicated in the pathophysiology of the opening of the mtPTP. Different proteins are released by permeability transition including cytochrome c which is responsible for apoptosis. This review aims to discuss the importance of PTP in the pathophysiology of PD and puts together different positive as well as negative aspects of drugs such as pramipexole, ropinirole, minocyclin, rasagilin, and safinamide which act as a blocker or modifier for mtPTP. Some of them may be detrimental in their neuroprotective nature.  相似文献   

16.
To simulateischemia and reperfusion, cultured rat hepatocytes were incubated inanoxic buffer at pH 6.2 for 4 h and reoxygenated at pH 7.4. Duringanoxia, intracellular pH (pHi)decreased to 6.3, mitochondria depolarized, and ATP decreased to <1%of basal values, but the mitochondrial permeability transition (MPT)did not occur as assessed by confocal microscopy from theredistribution of cytosolic calcein into mitochondria. Moreover, cellviability remained >90%. After reperfusion at pH 7.4, pHi returned to pH 7.2, the MPToccurred, and most hepatocytes lost viability. In contrast, afterreperfusion at pH 6.2 or withNa+-free buffer at pH 7.4, pHi did not rise and cellviability remained >80%. After acidotic reperfusion, the MPT did notoccur. When hepatocytes were reperfused with cyclosporin A (0.5-1µM) at pH 7.4, the MPT was prevented and cell viability remained>80%, although pHi increased to7.2. Reperfusion with glycine (5 mM) also prevented cell killing butdid not block recovery of pHi orthe MPT. Retention of cell viability was associated with recovery of30-40% of ATP. In conclusion, preventing the rise ofpHi after reperfusion blocked theMPT, improved ATP recovery, and prevented cell death. Cyclosporin Aalso prevented cell killing by blocking the MPT without blocking recovery of pHi. Glycine preventedcell killing but did not inhibit recovery ofpHi or the MPT.

  相似文献   

17.
After an episode of myocardial ischemia, opening of the mitochondrial permeability transition pore (mPTP), at the onset of reperfusion, is a critical determinant of myocyte death. We investigated the role of the mPTP as a target for cardioprotection in the human heart. We subjected human atrial tissue, harvested from patients undergoing cardiac surgery, to a period of lethal hypoxia and investigated the effect of suppressing mPTP opening at the onset of reoxygenation. We found that suppressing mPTP opening at the onset of reoxygenation with known mPTP inhibitors cyclosporin A (CsA, 0.2 micromol/l) and sanglifehrin A (SfA, 1.0 micromol/l) 1) improved recovery of baseline contractile function from 29.4 +/- 2.0% under control conditions to 48.7 +/- 2.2% with CsA and 46.1 +/- 2.3% with SfA (P < 0.01) and 2) improved cell survival from 62.8 +/- 5.3% under hypoxic control conditions to 91.4 +/- 4.1% with CsA and 87.2 +/- 6.2% with SfA (P < 0.001). Furthermore, with a cell model in which oxidative stress was used to induce mPTP opening in human atrial myocytes, we demonstrated directly that CsA and SfA mediated their cardioprotective effects by inhibiting mPTP opening, as evidenced by an extension in the time required to induce mPTP opening from 116 +/- 8 s under control conditions to 189 +/- 10 s with CsA and 183 +/- 12 s with SfA (P < 0.01). We report that suppressing mPTP opening at the onset of reoxygenation protects human myocardium against lethal hypoxia-reoxygenation injury. This suggests that, in the human heart, the mPTP is a viable target for cardioprotection.  相似文献   

18.
Cerebellar granule neurons (CGNs) require depolarization for their survival in culture. When deprived of this stimulus, CGNs die via an intrinsic apoptotic cascade involving Bim induction, Bax translocation, cytochrome c release, and caspase-9 and -3 activation. Opening of the mitochondrial permeability transition pore (mPTP) is an early event during intrinsic apoptosis; however, the precise role of mPTP opening in neuronal apoptosis is presently unclear. Here, we show that mPTP opening acts as an initiating event to stimulate Bax translocation to mitochondria. A C-terminal (alpha9 helix) GFP-Bax point mutant (T182A) that constitutively localizes to mitochondria circumvents the requirement for mPTP opening and is entirely sufficient to induce CGN apoptosis. Collectively, these data indicate that the major role of mPTP opening in CGN apoptosis is to trigger Bax translocation to mitochondria, ultimately leading to cytochrome c release and caspase activation.  相似文献   

19.
The age-related accumulation of mitochondrial DNA mutations has the potential to impair organ function and contribute to disease. In support of this hypothesis, accelerated mitochondrial mutagenesis is pathogenic in the mouse heart, and there is an increase in myocyte apoptosis. The current study sought to identify functional alterations in cell death signaling via mitochondria. Of particular interest is the mitochondrial permeability transition pore, opening of which can initiate cell death, while pore inhibition is protective. Here, we show that mitochondria from transgenic mice that develop mitochondrial DNA mutations have a marked inhibition of calcium-induced pore opening. Temporally, inhibited pore opening coincides with disease. Pore inhibition also correlates with an increase in Bcl-2 protein integrated into the mitochondrial membrane. We hypothesized that pore inhibition was mediated by mitochondrial Bcl-2. To test this hypothesis, we treated isolated mitochondria with Bcl-2 antagonistic peptides (derived from the BH3 domain of Bax or Bid). These peptides released the inhibition to pore opening. The data are consistent with a Bcl-2-mediated inhibition of pore opening. Thus, mitochondrial DNA mutations induce an adaptive-protective response in the heart that inhibits opening of the mitochondrial permeability pore.  相似文献   

20.
Aging is accompanied by mitochondrial dysfunction related with lowering of the respiratory complex activity and decrease of ATP synthesis, as well as by an enhancement of oxidative stress and increased sensitivity to mitochondrial permeability transition pore (mPTP) opening in mitochondral triggering the programmed cell death. In the present work we studied the effect of natural antioxidant (melatonin) on parameters of mPTP detected in non-synaptic mitochondria isolated from the brain of young and old rats (3 and 18 months, resp.) with different melatonin treatments; namely, melatonin was either directly applied to the mitochondrial suspension or chronically administered to rats with drinking water. The data obtained have shown that mitochondria isolated from brain of old rats were more susceptive to induction of mPTP. Melatonin added directly to suspension of brain mitochondria isolated from young rats demonstrated a proapoptotic effect. A prolonged chronical treatment with melatonin of old rats produced an anti-apoptotic protective effect. Non-synaptic mitochondria isolated from the brain of old rats treated with melatonin were more resistant to the mPTP opening and demonstrated the activation of respiration of mitochondria as compared to the untreated rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号