共查询到20条相似文献,搜索用时 15 毫秒
1.
The gating of the hERG channel is regulated by its eag domain through molecular interaction with either the cyclic nucleotide-binding homology domain (CNBHD) or the linker between transmembrane segments 4 and 5. Our NMR study on the purified CNBHD demonstrated that it contains nine β-strands and does not bind cAMP. We show that the eag domain binds to the CBND through an interface containing several disease-associated mutations. The N-terminal cap domain and R56 in the eag domain are important for the interaction with the CNBHD. Residues from the CNBHD that were affected by the interaction with the eag domain were also identified. A R56Q mutation does not cause major structural changes in the eag domain and showed reduced interaction with the CNBHD. 相似文献
2.
Macroscopic ion channel current can be derived by summation of the stochastic records of individual channel currents. In this paper, we present two probability density functions of single channel records that can uniquely determine the macroscopic current regardless of other statistical properties of records or the stochastic model of channel gating (presented often with stationary Markov models). We show that H(t), probability density function of channel opening events (introduced explicitly in this paper), and D(t), probability density function of the open duration (sometimes has named dwell time distribution as well), determine the normalized macroscopic current, G(t), through G(t) = P(t) - H(t) * Q(t) where P(t) is the cumulative density function of H(t), Q(t) is the cumulative density function of D(t), * is the symbol of convolution integral and G(t) is the macroscopic current divided by the amplitude of single channel current and the number of single channel sweeps. Compared to other equations for the macroscopic current, here the macroscopic current is expressed only in terms of the statistical properties of single channel current and not the stochastic model of ion channel gating or a conditioned form of macroscopic current. Single channel currents of an inactivating BK channel were used to validate this relationship experimentally too. In this paper, we used median filters as they can remove the unwanted noise without smoothing the transitions between open and closed states (compare to low pass filters). This filtering leads to more accurate measurement of transition times and less amount of missed events. 相似文献
3.
Macroscopic ion channel current is the summation of the stochastic records of individual channel currents and therefore relates to their statistical properties. As a consequence of this relationship, it may be possible to derive certain statistical properties of single channel records or even generate some estimates of the records themselves from the macroscopic current when the direct measurement of single channel currents is not applicable. We present a procedure for generating the single channel records of an ion channel from its macroscopic current when the stochastic process of channel gating has the following two properties: (I) the open duration is independent of the time of opening event and has a single exponential probability density function (pdf), (II) all the channels have the same probability to open at time t. The application of this procedure is considered for cases where direct measurement of single channel records is difficult or impossible. First, the probability density function (pdf) of opening events, a statistical property of single channel records, is derived from the normalized macroscopic current and mean channel open duration. Second, it is shown that under the conditions (I) and (II), a non-stationary Markov model can represent the stochastic process of channel gating. Third, the non-stationary Markov model is calibrated using the results of the first step. The non-stationary formulation increases the model ability to generate a variety of different single channel records compared to common stationary Markov models. The model is then used to generate single channel records and to obtain other statistical properties of the records. Experimental single channel records of inactivating BK potassium channels are used to evaluate how accurately this procedure reconstructs measured single channel sweeps. 相似文献
4.
Wang F Li H Liu MN Song H Han HM Wang QL Yin CC Zhou YC Qi Z Shu YY Lin ZJ Jiang T 《Biochemical and biophysical research communications》2006,351(2):443-448
Cysteine-rich secretory proteins (CRISPs) are secreted single-chain proteins found in different sources. Natrin is a member of the CRISP family purified from the snake venom of Naja naja atra, which has been reported as a BKca channel blocker. In our study, crystals of natrin were obtained in two different crystal forms and the structure of one of them was solved at a resolution of 1.68A. Our electrophysiological experiments indicated that natrin can block the ion channel currents of the voltage-gated potassium channel Kv1.3. Docking analyses of the interaction between natrin and Kv1.3 revealed a novel interaction pattern different from the two previously reported K(+) channel inhibition models termed "functional dyad" and "basic ring". These findings offered new insights into the function of natrin and how the specific interactions between CRISPs and different ion channels can be achieved. 相似文献
5.
Banci L Bertini I Ciofi-Baffoni S Gonnelli L Su XC 《Journal of molecular biology》2003,331(2):473-484
The two N-terminal domains of the P-type copper ATPase, CopAa and CopAb, from Bacillus subtilis differ in their folding capabilities in vitro. Whereas CopAb has the typical betaalphabetabetaalphabeta structure and is a rigid protein, CopAa is found to be largely unfolded. A sequence analysis of the two and of orthologue homologous proteins indicates that Ser46 in CopAa may destabilise the hydrophobic core, as also confirmed through a bioinformatic energy study. CopAb has a Val in the corresponding position. The S46V and S46A mutants are found to be folded, although the latter displays multiple conformations. S46VCopAa, in both apo and copper(I) loaded forms, has very similar structural and dynamic properties with respect to CopAb, besides a different length of strand beta2 and beta4. It is intriguing that the oxygen of Thr16 is found close, though at longer than bonding distance, to copper in both domains, as it also occurs in a human orthologue domain. This study contributes to understanding the behaviour of proteins that do not properly fold in vitro. A possible biological significance of the peculiar folding behaviour of this domain is discussed. 相似文献
6.
The Bacillus subtilis laboratory strain JH642 shows a cold-sensitive phenotype after a temperature shift from 37 to 15 degrees C in comparison to wild type strain MR168. A mutation in the acetolactate synthase complex IlvBH was found to be partially responsible for this growth defect after cold shock. Via DNA sequencing, genetic and biochemical studies, this defect was characterized, which entails a substitution of two adenines to guanines in the ilvB gene. This results in an amino acid substitution from lysine at position 176 to glycine. As a consequence, the acetolactate synthase efficiency in strain JH642 was found to be reduced by 51-fold. 相似文献
7.
Determinants of anion permeation in the second transmembrane domain of the mouse bestrophin-2 chloride channel 总被引:6,自引:0,他引:6
Bestrophins have been proposed to constitute a new family of Cl channels that are activated by cytosolic Ca. We showed previously that mutation of serine-79 to cysteine in mouse bestrophin-2 (mBest2) altered the relative permeability and conductance to SCN. In this paper, we have overexpressed various mutant constructs of mBest2 in HEK-293 cells to explore the contributions to anion selectivity of serine-79 and other amino acids (V78, F80, G83, F84, V86, and T87) located in the putative second transmembrane domain (TMD2). Residues selected for mutagenesis were distributed throughout TMD2, but mutations at all positions changed the selectivity. The effects on selectivity were rather modest. Replacement of residues 78, 79, 80, 83, 84, 86, or 87 with cysteine had similar effects: the permeability of the channel to SCN relative to Cl (PSCN/PCl) was decreased three- to fourfold and the relative SCN conductance (GSCN/GCl) was increased five- to tenfold. Side chains at positions 78 and 80 appeared to be situated close to the permeant anion, because the electrostatic charge at these positions affected permeation in specific ways. The effects of charged sulfhydryl-reactive MTS reagents were the opposite in the V78C and F80C mutants and the effects were partially mimicked by substitution of F80 with charged amino acids. In S79T, switching from Cl to SCN caused slow changes in GSCN/GCl (tau = 16.6 s), suggesting that SCN binding to the channel altered channel gating as well as conductance. The data in this paper and other data support a model in which TMD2 plays an important role in forming the bestrophin pore. We suggest that the major determinant in anion permeation involves partitioning of the permeant anion into an aqueous pore whose structural features are rather flexible. Furthermore, anion permeation and gating may be linked. 相似文献
8.
Characterization of a cloned Bacillus subtilis gene that inhibits sporulation in multiple copies. 总被引:11,自引:30,他引:11 下载免费PDF全文
We have isolated a 1.0-kilobase fragment of the Bacillus subtilis chromosome which, when present in high-copy-number plasmids, caused a sporulation-proficient strain to become phenotypically sporulation deficient. This is referred to as the sporulation inhibition (Sin) phenotype. This DNA fragment, in multicopy, also inhibited the production of extracellular protease activity, which normally appears at the beginning of stationary growth. The origin of the fragment was mapped between the dnaE and spo0A genes on the B. subtilis chromosome, and its complete DNA sequence has been determined. By analysis of various deletions and a spontaneous mutant the Sin function was localized to an open reading frame (ORF) predicted from the DNA sequence. Inactivation of this ORF in the chromosome did not affect the ability of cells to sporulate. However, the late-growth-associated production of proteases and alpha-amylase was elevated in these cells. The predicted amino acid sequence of the protein encoded by this ORF had a DNA-binding domain, typically present in several regulatory proteins. We propose that the sin ORF encodes a regulatory protein that is involved in the transition from vegetative growth to sporulation. 相似文献
9.
10.
In this study we have investigated the role of Epr, a minor extracellular serine protease, in the swarming motility of Bacillus subtilis 168. We identified that the protease activity of Epr was dispensable for swarming. Since the protease activity of Epr was confined to its N-terminal domain, we hypothesized instead that its C-terminal domain (CTD) could be critical for swarming. Our study showed that not only the expression of Epr-CTD was necessary, but also its secretion was crucial for the swarming motility of B. subtilis 168. 相似文献
11.
Structural and genetic analyses of a par locus that regulates plasmid partition in Bacillus subtilis. 总被引:4,自引:3,他引:4 下载免费PDF全文
The Bacillus plasmid pLS11 partitions faithfully during cell division. Using a partition-deficient plasmid vector, we randomly cloned DNA fragments of plasmid pLS11 and identified the locus that regulates plasmid partition (par) by cis complementation in Bacillus subtilis. The cloned par gene conferred upon the vector plasmid a high degree of segregational stability. The par locus was mapped to a 167-base-pair segment on pLS11, and its nucleotide sequence was determined. The cloned par fragment regulated the partition of several different Bacillus replicons, and it only functioned in cis; it did not contain the replication function nor elevate the plasmid copy number in B. subtilis. The expression of par was orientation specific with respect to the replication origin on the same plasmid. We propose that the pLS11-derived par functions as a single-stranded site that interacts with other components involved in plasmid partition during cell division. 相似文献
12.
Sven Schünke Kerstin Novak Matthias Stoldt U. Benjamin Kaupp Dieter Willbold 《Biomolecular NMR assignments》2007,1(2):179-181
In order to determine the structure of the 15 kDa cyclic nucleotide binding domain of a cyclic nucleotide-activated K+ channel from Mesorhizobium loti and its interaction with cAMP, nearly complete 1H, 13C, and 15N chemical shifts were assigned. 相似文献
13.
NMR measurements can give important information on solution structure, without the necessity for a full-scale solution structure
determination. The C-terminal protein binding domain of the ribosome-associated chaperone protein trigger factor is composed
of non-contiguous parts of the polypeptide chain, with an interpolated prolyl isomerase domain. A construct of the C-terminal
domain of Escherichia coli trigger factor containing residues 113–149 and 247–432, joined by a Gly-Ser-Gly-Ser linker, is well folded and gives excellent
NMR spectra in solution. We have used NMR measurements on this construct, and on a longer construct that includes the prolyl
isomerase domain, to distinguish between two possible structures for the C-terminal domain of trigger factor, and to assess
the behavior of the trigger factor C-terminal domain in solution. Two X-ray crystal structures, of intact trigger factor from
E. coli (Ferbitz et al., Nature 431:590–596, 2004), and of a truncated trigger factor from Vibrio cholerae (Ludlam et al., Proc Natl Acad Sci USA 101:13436–13441, 2004) showed significant differences in the structure of the C-terminal domain, such that the two structures could not be superimposed.
We show using NMR chemical shifts and long range nuclear Overhauser effects that the secondary and tertiary structure of the
E. coli C-terminal domain in solution is consistent with the crystal structure of the E. coli trigger factor and not with the V. cholerae protein. Given the similarity of the amino acid sequences of the E. coli and V. cholerae proteins, it appears likely that the structure of the V. cholerae protein has been distorted as a result of truncation of a 44-amino acid segment at the C-terminus. Analysis of residual dipolar
coupling measurements shows that the overall topology of the solution structure is completely inconsistent with both structures.
Dynamics analysis of the C-terminal domain using T1, T2 and heteronuclear NOE parameters show that the protein is overall rather flexible. These results indicate that the structure
of this domain in solution resembles the X-ray crystal structure of the E. coli protein in secondary structure and at least some tertiary contacts, but that the overall topology differs in solution, probably
due to structural fluctuation. 相似文献
14.
Megumi Kono Takashi Aoki Masanori Sasatsu Norihisa Noguchi Koji O’hara 《Bioscience, biotechnology, and biochemistry》2013,77(5):1429-1433
The chloramphenicol-resistance (CPr) plasmid pTZ12 (2.55 kb) in Bacillus subtilis was genetically analyzed in detail, and the CPr determinant and the functional unit of replication were mapped. The plasmids pTZ12 and pBR322 were digested with suitable restriction endonucleases and ligated with T4 ligase. The ligated DNAs were introduced into E. coli by transformation and CP-resistant transformants were selected. In conclusion, the CPr determinant was mapped between a TaqI site and a BclI site (about 900 base pairs) on pTZ12. A set of pTZ12–pBR322 recombinant plasmids isolated from E. coli was introduced into B. subtilis by transformation to test for ability to replicate in B. subtilis. From the results, the region of the functional unit of pTZ12 replication was mapped. It was also proved that the gene product of this CPr determinant was chloramphenicol acetyltransferase (CAT) and the native CAT in the cells carrying pTZ12 was a dimeric protein with two identical subunits having a molecular weight of approximately 24,000 (24 K). 相似文献
15.
Seale JW 《Proteins》2006,64(2):385-390
One of the molecular factors contributing to Leishmania sp. virulence and pathogenesis is the major surface metalloprotease GP63, alternatively called leishmanolysin, MSP, and PSP (EC 3.4.24.36). Here, the molecular dynamics simulation of Leishmania major GP63 in water at pH 7 is reported. Upon solvation, GP63 undergoes a sharp structural relaxation with respect to the crystal structure. The fluctuation pattern occurs essentially in solvent-exposed nonstructured regions. By contrast, the active site turns out to be rigid. Essential dynamics and dynamic-domain analyses, both carried out on the equilibrated portion of GP63, show that the fingerprint fluctuations of GP63 are practically characterized by the motion of a large part of the N-terminal domain. These results appear to be in line with substrate recognition and (pro)enzyme activation played by the N-terminal domain of GP63. A systematic analysis among a series of 10 homologs of GP63 also shows that the residues involved in the interdomain bending result highly conserved. This finding also suggests possible relationship between the maintainance of proteolytic activity and the similarity of the dynamical properties of the related enzymes. 相似文献
16.
FSP27 (CIDE-3 in humans) plays critical roles in lipid metabolism and apoptosis and is known to be involved in regulation of lipid droplet (LD) size and lipid storage and apoptotic DNA fragmentation. Given that CIDE-containing proteins including FSP27 are associated with many human diseases including cancer, aging, diabetes, and obesity, studies of FSP27 and other CIDE-containing proteins are of great biological importance. As a first step toward elucidating the molecular mechanisms of FSP27-mediated lipid droplet growth and apoptosis, we report the crystal structure of the CIDE-N domain of FSP27 at a resolution of 2.0 Å. The structure revealed a possible biologically important homo-dimeric interface similar to that formed by the hetero-dimeric complex, CAD/ICAD. Comparison with other structural homologues revealed that the PB1 domain of BEM1P, ubiquitin-like domain of BAG6 and ubiquitin are structurally similar proteins. Our homo-dimeric structure of the CIDE-N domain of FSP27 will provide important information that will enable better understanding of the function of FSP27. 相似文献
17.
Pleckstrin1 is a major substrate for protein kinase C in platelets and leukocytes, and comprises a central DEP (disheveled, Egl-10, pleckstrin) domain, which is flanked by two PH (pleckstrin homology) domains. DEP domains display a unique alpha/beta fold and have been implicated in membrane binding utilizing different mechanisms. Using multiple sequence alignments and phylogenetic tree reconstructions, we find that 6 subfamilies of the DEP domain exist, of which pleckstrin represents a novel and distinct subfamily. To clarify structural determinants of the DEP fold and to gain further insight into the role of the DEP domain, we determined the three-dimensional structure of the pleckstrin DEP domain using heteronuclear NMR spectroscopy. Pleckstrin DEP shares main structural features with the DEP domains of disheveled and Epac, which belong to different DEP subfamilies. However, the pleckstrin DEP fold is distinct from these structures and contains an additional, short helix alpha4 inserted in the beta4-beta5 loop that exhibits increased backbone mobility as judged by NMR relaxation measurements. Based on sequence conservation, the helix alpha4 may also be present in the DEP domains of regulator of G-protein signaling (RGS) proteins, which are members of the same DEP subfamily. In pleckstrin, the DEP domain is surrounded by two PH domains. Structural analysis and charge complementarity suggest that the DEP domain may interact with the N-terminal PH domain in pleckstrin. Phosphorylation of the PH-DEP linker, which is required for pleckstrin function, could regulate such an intramolecular interaction. This suggests a role of the pleckstrin DEP domain in intramolecular domain interactions, which is distinct from the functions of other DEP domain subfamilies found so far. 相似文献
18.
Zhang W Liu Z Crombet L Amaya MF Liu Y Zhang X Kuang W Ma P Niu L Qi C 《Biochemical and biophysical research communications》2011,(3):425-428
Methyl-CpG (mCpG) binding domain protein 4 (MBD4) is a member of mammalian DNA glycosylase superfamily. It contains an amino-proximal methyl-CpG binding domain (MBD) and a C-terminal mismatch-specific glycosylase domain, which is an important molecule believed to be involved in maintaining of genome stability. Herein, we determined the crystal structure of C-terminal glycosylase domain of human MBD4. And the structural alignments of other helix-hairpin-helix (HhH) DNA glycosylases show that the human MBD4 glycosylase domain has the similar active site and the catalytic mechanisms as others. But the different residues in the N-terminal of domain result in the change of charge distribution on the surface of the protein, which suggest the different roles that may relate some diseases. 相似文献
19.
D. Petracchi M. Barbi M. Pellegrini M. Pellegrino A. Simoni 《European biophysics journal : EBJ》1991,20(1):31-39
A method to test the Markov nature of ion channel gating is proposed. It makes use of singly and doubly conditional distributions. The application of this method to recordings from single BK channels provides evidence that at least two states of the underlying kinetic scheme are left at a constant rate. Moreover, the probabilities, when leaving a state, of reaching another given state are shown to be constant for all the states of the system.
Offprint requests to: D. Petracchi 相似文献