首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Gene expression analysis comparing nonpregnant with pregnant bovine uteri, including placenta, was performed with a custom cDNA microarray containing 1,933 independent genes. These genes were classified into six categories according to biological function, as follows: cell and tissue structural dynamics (108 genes), intercellular communication (221), intracellular metabolism (265), cell cycle and apoptosis (26), regulation of gene expression (113), expressed sequence tag (EST) and function unknown (617), and uncomplemented genes (583 clones). This array possessed bovine placental/endometrial specificity, as it included many pregnancy-specific molecules, such as pregnancy-associated glycoprotein-1 (PAGs), placental lactogen (PLs), and prolactin-related protein-1 (PRPs). A total of 77 genes were induced and 12 repressed in the placenta/endometrium. Our results point to a fundamental role for bovine placental-specific genes such as PAGs, PLs, and PRPs, in implantation and placentogenesis, and document that cDNA microarray analysis from bovine placenta/endometrium is possible and is a specific tool for monitoring genome-wide gene expression during the establishment and maintenance of pregnancy.  相似文献   

3.
4.
Human angiogenin is a potent inducer of neovascularization. There is a strong evidence to suggest that it might be involved in morphological and angiogenic changes in the placenta, that are necessary for a successful fetal outcome during pregnancy. However, its precise role in the pathogenesis of abnormal pregnancies is yet unknown. Intrauterine growth retardation (IUGR), an abnormal pregnancy is not a specific disease entity per se, but rather a manifestation of many possible fetal and maternal disorders. In this study, we demonstrated, for the first time, that placental explants in vitro secrete significantly elevated levels of angiogenin in placental tissues from patients with IUGR. We also observed enhanced mRNA expression in placenta from these patients. In addition, using the immunohistochemical methods, we observed identical staining of angiogenin to villous syncytiotrophobalst and fetal endothelial cells in both IUGR and normal placenta. Functionally active placental explants were used to detect immunoreactive angiogenin in conditioned media of all the samples from IUGR placenta and normal term group. The mean levels of angiogenin secreted by IUGR placenta were 1.4-, 1.6-, and 1.3-fold higher (P < 0.01) than normal term samples at 24, 48, and 72 hr of culture, respectively. Expression profiles of angiogenin from term and IUGR cases are in agreement with its mRNA levels and immunoblot analysis. In conclusion, the significant elevated levels of angiogenin in IUGR placenta may provide a molecular mechanism for the abnormal placental development.  相似文献   

5.
Depressive symptoms during pregnancy are common and may have impact on the developing child. Selective serotonin reuptake inhibitors (SSRIs) are the most prescribed antidepressant treatment, but unfortunately, these treatments can also negatively affect the behavioral development and health of a child during pregnancy. In addition, serotonin (5-HT) exerts neurotrophic actions with thus far not fully known effects in the offspring. The neurotrophic growth factor (NGF) is involved in neuronal cell survival and differentiation, and altered placenta levels have been found to increase the risk for pregnancy complications, similar to those found in women treated with SSRIs. We therefore investigated whether the NGF signaling pathway was altered in the placenta from women treated with SSRIs (n = 12) and compared them with placenta from depressed (n = 12) and healthy mothers (n = 12). Results from immunohistochemical stainings revealed that placental NGF protein levels of SSRI-treated women were increased in both trophoblasts and endothelial cells compared with depressed and control women. In addition, downstream of the NGF receptor TrkA, increased levels of the signaling proteins ROCK2 and phosphorylated Raf-1 were found in stromal cells and a tendency towards increased levels of ROCK2 in trophoblasts and endothelial cells in SSRI-treated women when compared to healthy controls. SSRI-treated women also displayed increased levels of phosphorylated ROCK2 in all placental cell types studied in comparison with depressed and control women. Interestingly, in placental endothelial cells from depressed women, NGF levels were significantly lower compared to control women, but ROCK2 levels were increased compared with control and SSRI-treated women. Taken together, these results show that the NGF signaling and downstream pathways in the placenta are affected by SSRI treatment and/or antenatal depression. This might lead to an altered placental function, although the clinical relevance of our findings still needs to be investigated.  相似文献   

6.
Zhang Y  Zhang YL  Feng C  Wu YT  Liu AX  Sheng JZ  Cai J  Huang HF 《Proteomics》2008,8(20):4344-4356
The aim of this study was to use proteomics-based approach to examine differences in protein expression in placenta derived from assisted reproductive technology (ART) and normal pregnancy. Using 2-DE we found that, compared with the control group, 12 spots in standard in vitro fertilization group and 18 spots in intracytoplasmic sperm injection group were identified as significantly differentially expressed proteins. Among them, six spots were differentially expressed in both standard IVF and ICSI groups with the same change tendency. Totally, 20 proteins were successfully identified by MALDI TOF/TOF MS, including proteins involved in the membrane traffic, metabolism, nucleic acid processing, stress response and cytoskeleton. Notably, five proteins detected to be differentially expressed in both ART groups were identified as annexin A3, hnRNP C1/C2, alpha-SNAP, FTL and ATP5A. Some of the proteins were confirmed by Western blot and immunohistochemistry analysis. Our study allowed for the initial identification of these proteins related to various functions in placentation with significantly altered abundance in ART groups. The present results reveal that abnormal protein profiles are involved in ART placenta and these differentially expressed proteins may be valuable for the evaluation of potential association between ART treatment and offspring outcome.  相似文献   

7.
Placental abnormalities are associated with two of the most common and serious complications of human pregnancy, maternal preeclampsia (PE) and fetal intrauterine growth restriction (IUGR), each disorder affecting ~5% of all pregnancies. An important question for the use of the mouse as a model for studying human disease is the degree of functional conservation of genetic control pathways from human to mouse. The human and mouse placenta show structural similarities, but there have been no systematic attempts to assess their molecular similarities or differences. We collected protein and mRNA expression data through shot‐gun proteomics and microarray expression analysis of the highly vascular exchange region, microdissected from the human and mouse near‐term placenta. Over 7000 ortholog genes were detected with 70% co‐expressed in both species. Close to 90% agreement was found between our human proteomic results and 1649 genes assayed by immunohistochemistry for expression in the human placenta in the Human Protein Atlas. Interestingly, over 80% of genes known to cause placental phenotypes in mouse are co‐expressed in human. Several of these phenotype‐associated proteins form a tight protein–protein interaction network involving 15 known and 34 novel candidate proteins also likely important in placental structure and/or function. The entire data are available as a web‐accessible database to guide the informed development of mouse models to study human disease.  相似文献   

8.
Eutherian mammals share a common ancestor that evolved into two main placental types, i.e., hemotrophic (e.g., human and mouse) and histiotrophic (e.g., farm animals), which differ in invasiveness. Pregnancies initiated with assisted reproductive techniques (ART) in farm animals are at increased risk of failure; these losses were associated with placental defects, perhaps due to altered gene expression. Developmentally regulated genes in the placenta seem highly phylogenetically conserved, whereas those expressed later in pregnancy are more species-specific. To elucidate differences between hemotrophic and epitheliochorial placentae, gene expression data were compiled from microarray studies of bovine placental tissues at various stages of pregnancy. Moreover, an in silico subtractive library was constructed based on homology of bovine genes to the database of zebrafish — a nonplacental vertebrate. In addition, the list of placental preferentially expressed genes for the human and mouse were collected using bioinformatics tools (Tissue-specific Gene Expression and Regulation [TiGER] — for humans, and tissue-specific genes database (TiSGeD) — for mice and humans). Humans, mice, and cattle shared 93 genes expressed in their placentae. Most of these were related to immune function (based on analysis of gene ontology). Cattle and women shared expression of 23 genes, mostly related to hormonal activity, whereas mice and women shared 16 genes (primarily sexual differentiation and glycoprotein biology). Because the number of genes expressed by the placentae of both cattle and mice were similar (based on cluster analysis), we concluded that both cattle and mice were suitable models to study the biology of the human placenta.  相似文献   

9.
The corticotropin releasing hormone gene is expressed in human placenta   总被引:10,自引:0,他引:10  
Maternal plasma immunoreactive corticotropin-releasing hormone (IR-CRH) increases progressively with pregnancy. This elevated plasma IR-CRH is presumably secreted by the placenta. To investigate further this hypothesis, we searched for the CRH mRNA and its peptide product in full term human placentae. Using a radiolabelled 48-mer oligonucleotide probe complementary to a portion of human CRH mRNA, we identified a 1300 nucleotide RNA from human placenta and rat hypothalami. We next examined the chromatographic characteristics of the placental IR-CRH. The bulk of the IR-CRH extracted from placenta and the IR-CRH secreted in vitro by placental fragments had the same chromatographic profiles as synthetic CRH. These findings indicate that the CRH gene is expressed in human placenta and imply that this organ is a site of CRH biosynthesis during pregnancy.  相似文献   

10.
Infection with Plasmodium falciparum during pregnancy leads to the selective adherence of infected red blood cells (IRBCs) in the placenta causing placental malaria. The IRBC adherence is mediated through the chondroitin 4-sulfate (C4S) chains of unusually low-sulfated chondroitin sulfate proteoglycans (CSPGs) in the placenta. To study the structural interactions involved in C4S-IRBC adherence, various investigators have used CSPGs from different sources. Since the structural characteristics of the polysaccharide chains in CSPGs from various sources differ substantially, the CSPGs are likely to differentially bind IRBCs. In this study, the CSPG purified from bovine trachea, a CSPG form of human recombinant thrombomodulin (TM-CSPG), two CSPG fractions from bovine cornea, and the CSPGs of human placenta, the natural receptor, were studied in parallel for their IRBC binding characteristics. The TM-CSPG and corneal CSPG fractions could bind IRBCs at significantly higher density compared to the placental CSPGs. However, the avidity of IRBC binding by TM-CSPG was considerably low compared to placental CSPGs. The corneal CSPGs have substantially higher binding strengths. The bovine tracheal CSPG bound IRBCs at much lower density and exhibited significantly lower avidity than the placental CSPGs. These data demonstrated that the bovine tracheal CSPG and TM-CSPG are not ideal for studying the fine structural interactions involved in the IRBC adherence to the placental C4S, whereas the bovine corneal CSPGs are better alternatives to the placental CSPGs for determining these interactions.  相似文献   

11.
Decorin is a small leucine-rich proteoglycan which is involved in multiple biological functions mainly as a structural and signaling molecule. Due to its biological properties in connective tissue, decorin may participate in remodeling of ECM during attachment and detachment of placenta within the course of pregnancy and at parturition in cows. The aim of the study was to detect the presence of decorin protein in bovine placental tissues and to evaluate its profile during pregnancy and at parturition. Placental tissues from healthy pregnant cows (2–5 month) were collected in abattoir (n?=?10), while parturient tissues were obtained during caesarian section at physiological term (n?=?6). Maternal and fetal parts were separated manually and subjected to homogenization and to quantitative ELISA and verification by Western blotting with anti-decorin antibodies. ELISA test showed that the concentration of decorin during pregnancy was higher in the fetal part of placenta compared with the maternal part (p?<?0.001). Similar pattern was noted regarding to maternal and fetal samples derived from parturient cows. Our preliminary results demonstrate that the concentration of decorin is gestation time-dependent in healthy bovine placenta. Possible confirmation of the involvement of decorin in early pregnancy attachment and detachment of the placenta during parturition requires further research.  相似文献   

12.
The enzyme 20α-hydroxysteroid dehydrogenase (20α-HSD) catalyzes the conversion of progesterone to its inactive form, 20α-hydroxyprogesterone. This enzyme has been shown to play a critical role in the regulation of luteal function in experimental animals. In this study, we cloned and expressed the gene encoding elk deer 20α-HSD from reproductive placental and ovarian tissues. PCR, 3'- and 5'-RACE, and northern blot analysis were performed for the cloning and characterization of deer 20α-HSD gene. We expressed recombinant deer 20α-HSD protein and used western blot analysis to determine protein expression levels in the placenta and ovary during pregnancy. The full cDNA sequence of 20α-HSD was used to clone an open reading frame encoding 323 amino acids and consisting of 1142 bp. The nucleotide sequence of deer 20α-HSD showed high homology with the sequences of the bovine (96%), goat (96%), and human (83%) 20α-HSD genes. 20α-HSD mRNA was strongly expressed in the placenta on days 30, 60, and 70 of pregnancy. A high level of the protein was also detected in the placenta but not in fetal skin tissue. The recombinant 20α-HSD protein produced in mammalian cells and bacterial systems had a molecular weight of approximately 37-kDa. The deer 20α-HSD protein signal was specifically localized in the basal part of the primary chorionic villi and chorionic stem villus of the placenta during early pregnancy. The 20α-HSD protein was also intensively localized in the larger luteal cells of the corpus luteum during pregnancy.  相似文献   

13.
Preeclampsia is a serious complication of pregnancy, which affects 2–8% of all pregnancies and is one of the leading causes of maternal and perinatal mortality and morbidity worldwide. To better understand the molecular mechanisms involved in pathological development of placenta in preeclampsia, we used high-resolution LC-MS/MS technologies to construct a comparative N-glycoproteomic and phosphoproteomic profiling of human placental plasma membrane in normal and preeclamptic pregnancies. A total of 1027 N-glyco- and 2094 phospho- sites were detected in human placental plasma membrane, and 5 N-glyco- and 38 phospho- proteins, respectively, with differentially expression were definitively identified between control and preeclamptic placental plasma membrane. Further bioinformatics analysis indicated that these differentially expressed proteins correlate with several specific cellular processes occurring during pathological changes of preeclamptic placental plasma membrane.  相似文献   

14.
Proteomic analysis of bovine conceptus fluids during early pregnancy   总被引:1,自引:0,他引:1  
A proteomic analysis of bovine amniotic and allantoic fluids collected around Day 45 of gestation was performed using gel-based and LC-based MS workflows. A depletion/enrichment protocol using ultrafiltration under denaturing and reducing conditions produced an enriched fraction containing protein species predominantly between 5 and 50 kDa molecular weight. The analyses of conceptus fluid proteins were performed using two strategies; first, 2-DE coupled with MALDI-TOF-MS/MS and LC-ESI-MS/MS analysis of individual protein spots and second, a global protein snapshot of the enriched 5-50 kDa protein fraction by LC-ESI-MS/MS and LC-MALDI-TOF-MS/MS. Allocation of bovine specific protein identities was achieved by searching the Interactive Bovine In Silico SNP (IBISS) and NCBInr protein sequence databases resulting in the confident PMF identification and MS/MS confirmation of >200 2-DE generated allantoic fluids protein spots (74 individual protein species identified) and the MS/MS peptide identification of 105 LC-ESI-MS/MS generated protein identities. In total, the identity of 139 individual protein species from allantoic fluids was confirmed with peptide sequence probability MOWSE scores at the p<0.05 level or better. The comparison of bovine Day 45 amniotic and allantoic fluids protein profiles revealed differences between these two conceptus fluids in early pregnancy.  相似文献   

15.
This study was designed to determine the impact of protein malnutrition during early pregnancy on fetal and placental growth and on the protein synthesis capacity of placental and endometrial tissues. Twelve crossbred sows received 1.8 kg/d of a control (13% protein) or protein-restricted (0.5% protein) diet from the day of breeding to Day 63 of pregnancy, when dissections were performed on each conceptus unit. The de novo protein synthetic rate of placental and endometrial explants was measured using (35)S-methionine. These proteins and the proteins from amniotic and allantoic fluids were separated by polyacrylamide gel electrophoresis. Placental weight was significantly reduced in the sows fed the restricted diet, with a tendency for decreased fetal weight as well. No differences were found due to dietary treatment in de novo protein synthesis or in the electrophoretic patterns of secreted proteins of the placenta or endometrium. The apparent quantity of 3 proteins in the allantoic fluid of the restricted diet fetuses decreased, while 1 protein increased in comparison with that of the control fetuses. These data suggest that protein malnutrition in early pregnancy decreases placental growth, thereby decreasing both fetal growth and the opportunity for compensatory growth upon nutritional rehabilitation.  相似文献   

16.
We investigated the impact of maternal smoking during pregnancy on placental DNA methylation and how this may mediate the association between maternal smoking and pro-inflammatory proteins in cord blood. The study population consisted of 27 individuals exposed to maternal smoking throughout pregnancy, 32 individuals exposed during a proportion of the pregnancy, and 61 unexposed individuals. Methylation of 11 regions within 6 genes in placenta tissue was assessed by pyrosequencing. Levels of 7 pro-inflammatory proteins in cord blood were assessed by electrochemiluminescence. Differential methylation was observed in the CYP1A1 promoter and AHRR gene body regions between women who smoked throughout pregnancy and non-smokers on the fetal-side of the placenta and in the GFI1 promoter between women who quit smoking while pregnant and non-smokers on the maternal-side of the placenta. Maternal smoking resulted in elevated levels of IL-8 protein in cord blood, which was not mediated by DNA methylation of our candidate regions at either the maternal or the fetal side of the placenta. Placental DNA methylation was associated with levels of inflammatory proteins in cord blood. Our observations suggest that maternal smoking during pregnancy affects both placental DNA methylation and the neonate's immune response.  相似文献   

17.
Prenatal stress during pregnancy leads to sex‐specific effects on fetal development and disease susceptibility over the life span; however, the origin of sex differences has not been identified. The placenta not only plays a key role in fetal growth and development throughout pregnancy, but also affects the fetal programming underlying subsequent adult health and accounts. Therefore, sex‐specific adaptation of the placenta may be central to the sex differences in fetal growth and survival. Here, we analyzed the effects of prenatal dexamethasone (Dex) on sex‐specific changes in placental gene expression using RNA‐Seq. Placental tissues from males and females were separated into two developmentally distinct fetal and maternal parts at E11.5 stage. The majority of genes in female placentas were downregulated by prenatal Dex, whereas those were mostly maintained or rather upregulated in male placentas. RNA‐Seq results were validated using independent biological replicates from the same stage and placental tissue samples from E18.5 by realtime PCR assays. Activation of various inflammatory response‐related genes, chemokines and their receptors, particularly in male placentas, strongly implies that prenatal Dex exposure causes sex‐specific physiological responses that can lead to inflammatory diseases involving vascular pathology.  相似文献   

18.
To determine the potential role of the placenta in transmission of human immunodeficiency virus (HIV) from mother to fetus, the ability of human placental tissue to support HIV type 1 (HIV-1) infection was examined. HIV-1-seronegative first-trimester placentas were maintained in culture and infected with HIV-1. Virus production, measured by HIV-1 antigen release into the supernatant, and HIV-1 DNA, identified by polymerase chain reaction, were detected for at least 12 days postinfection. Western immunoblot analysis showed Gag proteins, precursor p55, and cleavage products p24 and p17 in HIV-1-infected tissues. Double labeling of placental villi with antibodies to CD4 and placental trophoblast-specific alkaline phosphatase indicated that trophoblasts express CD4 antigen. Additionally, immunostaining of HIV-1-infected tissues with anti-p24 antibodies demonstrated HIV-1 protein expression in placental trophoblasts. Evaluation of human chorionic gonadotropin and progesterone production by the placental cultures indicated that there was a 90% decrease in human chorionic gonadotropin and a 70% decrease in progesterone production in HIV-1-infected cultures in comparison with controls. These data demonstrate that trophoblastic cells of human placenta tissue express CD4 and are susceptible to HIV-1 infection; also, placental endocrine function is decreased by HIV-1 infection. Thus, the placenta may serve as a reservoir of HIV-1 infection during pregnancy contributing to infection of the fetus, and decreased placental hormone production may result in impaired fetal development.  相似文献   

19.
The role of fat metabolism during human pregnancy and in placental growth and function is poorly understood. Mitochondrial fatty acid oxidation disorders in an affected fetus are associated with maternal diseases of pregnancy, including preeclampsia, acute fatty liver of pregnancy, and the hemolysis, elevated liver enzymes, and low platelets syndrome called HELLP. We have investigated the developmental expression and activity of six fatty acid beta-oxidation enzymes at various gestational-age human placentas. Placental specimens exhibited abundant expression of all six enzymes, as assessed by immunohistochemical and immunoblot analyses, with greater staining in syncytiotrophoblasts compared with other placental cell types. beta-Oxidation enzyme activities in placental tissues were higher early in gestation and lower near term. Trophoblast cells in culture oxidized tritium-labeled palmitate and myristate in substantial amounts, indicating that the human placenta utilizes fatty acids as a significant metabolic fuel. Thus human placenta derives energy from fatty acid oxidation, providing a potential explanation for the association of fetal fatty acid oxidation disorders with maternal liver diseases in pregnancy.  相似文献   

20.
Transgenic and knockout studies have advanced our understanding of the genetic control of embryonic development over the past decades. However, interpretation of the phenotype of mutant mice is potentially complicated, since the commonly used knockout approach modifies both the fetal and placental genome. To circumvent this problem, we previously developed a placenta‐specific gene manipulation system by lentiviral vector transduction of embryos at the blastocyst stage. In the present study, by combination with the Cre/LoxP system, we successfully demonstrate placenta‐specific gene activation and inactivation in EGFP reporter mice and Ets2 floxed mice, respectively. Transient expression using integrase‐defective lentiviral (IDLV) vectors diminished the toxic effect of Cre expression and solved the dilemma of mosaic recombination with lower concentrations and toxic effects with higher concentrations of Cre recombinase. We also show that placenta‐specific Ets2 disruption causes embryonic lethality and reconfirmed the critical role of Ets2 during placentation. This technology facilitates both gain and loss of gene function analyses in placental development during pregnancy. Since IDLV vectors can efficiently transduce a variety of cell types similarly to wild‐type vectors, our IDLV‐Cre strategy is potentially useful for a wide range of applications. genesis 47:793–798, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号