首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Apoptosis and autophagy are known to play important roles in cancer development. It has been reported that HVJ-E induces apoptosis in cancer cells, thereby inhibiting the development of tumors. To define the mechanism by which HVJ-E induces cell death, we examined whether HVJ-E activates autophagic and apoptotic signaling pathways in HeLa cells.

Methods

Cells were treated with chloroquine (CQ) and rapamycin to determine whether autophagy is involved in HVJ-E-induced apoptosis. Treatment with the ERK inhibitor, U0126, was used to determine whether autophagy and apoptosis are mediated by the ERK pathway. Activators of the PI3K/Akt/mTOR/p70S6K pathway, 740 Y-P and SC79, were used to characterize its role in HVJ-E-induced autophagy. siRNA against Atg3 was used to knock down the protein and determine whether it plays a role in HVJ-E-induced apoptosis in HeLa cells.

Results

We found that HVJ-E infection inhibited cell viability and induced apoptosis through the mitochondrial pathway, as evidenced by the expression of caspase proteins. This process was promoted by rapamycin treatment and inhibited by CQ treatment. HVJ-E-induced autophagy was further blocked by 740 Y-P, SC79, and U0126, indicating that both the ERK- and the PI3K/Akt/mTOR/p70S6K-pathways were involved. Finally, autophagy-mediated apoptosis induced by HVJ-E was inhibited by siRNA-mediated Atg3 knockdown.

Conclusion

In HeLa cells, HVJ-E infection triggered autophagy through the PI3K/Akt/mTOR/p70S6K pathway in an ERK1/2-dependent manner, and the induction of autophagy promoted apoptosis in an Atg3-dependent manner.
  相似文献   

2.

Objective

To investigate the effect of parthenolide on apoptosis and autophagy and to study the role of the PI3K/Akt signaling pathway in cervical cancer.

Results

Parthenolide inhibits HeLa cell viability in a dose dependent-manner and was confirmed by MTT assay. Parthenolide (6 µM) induces mitochondrial-mediated apoptosis and autophagy by activation of caspase-3, upregulation of Bax, Beclin-1, ATG5, ATG3 and down-regulation of Bcl-2 and mTOR. Parthenolide also inhibits PI3K and Akt expression through activation of PTEN expression. Moreover, parthenolide induces generation of reactive oxygen species that leads to the loss of mitochondrial membrane potential.

Conclusion

Parthenolide induces apoptosis and autophagy-mediated growth inhibition in HeLa cells by suppressing the PI3K/Akt signaling pathway and mitochondrial membrane depolarization and ROS generation. Parthenolide may be a potential therapeutic agent for the treatment of cervical cancer.
  相似文献   

3.

Background

The adapter proteins Appl1 (adaptor protein containing pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif 1) and Appl2 are highly homologous and involved in several signaling pathways. While previous studies have shown that Appl1 plays a pivotal role in adiponectin signaling and insulin secretion, the physiological functions of Appl2 are largely unknown.

Results

In the present study, the role of Appl2 in sepsis shock was investigated by using Appl2 knockout (KO) mice. When challenged with lipopolysaccharides (LPS), Appl2 KO mice exhibited more severe symptoms of endotoxin shock, accompanied by increased production of proinflammatory cytokines. In comparison with the wild-type control, deletion of Appl2 led to higher levels of TNF-α and IL-1β in primary macrophages. In addition, phosphorylation of Akt and its downstream effector NF-κB was significantly enhanced. By co-immunoprecipitation, we found that Appl2 and Appl1 interacted with each other and formed a complex with PI3K regulatory subunit p85α, which is an upstream regulator of Akt. Consistent with these results, deletion of Appl1 in macrophages exhibited characteristics of reduced Akt activation and decreased the production of TNFα and IL-1β when challenged by LPS.

Conclusions

Results of the present study demonstrated that Appl2 is a critical negative regulator of innate immune response via inhibition of PI3K/Akt/NF-κB signaling pathway by forming a complex with Appl1 and PI3K.
  相似文献   

4.

Background

We have reported that the phosphatidylinositol-3 kinase (PI3K)/Akt/RhoA signaling pathway mediates Wnt5a-induced cell migration of osteosarcoma cells. However, the specific receptors responding to Wnt5a ligand remain poorly defined in osteosarcoma metastasis.

Methods

Wound healing assays were used to measure the migration rate of osteosarcoma cells transfected with shRNA or siRNA specific against ROR2 or indicated constructs. We evaluated the RhoA activation in osteosarcoma MG-63 and U2OS cells with RhoA activation assay. A panel of inhibitors of PI3K and Akt treated osteosarcoma cells and blocked kinase activity. Western blotting assays were employed to measure the expression and activation of Akt. Clonogenic assays were used to measure the cell proliferation of ROR2-knockdown or ROR2-overexpressed osteosarcoma cells.

Results

Wnt5a-induced osteosarcoma cell migration was largely abolished by shRNA or siRNA specific against ROR2. Overexpression of RhoA-CA (GFP-RhoA-V14) was able to rescue the Wnt5a-induced cell migration blocked by ROR2 knockdown. The Wnt5a-induced activation of RhoA was mostly blocked by ROR2 knockdown, and elevated by ROR2 overexpression, respectively. Furthermore, we found that Wnt5a-induced cell migration was significantly retarded by RhoA-siRNA transfection or pretreatment of HS-173 (PI3Kα inhibitor), MK-2206 (Akt inhibitor), A-674563 (Akt1 inhibitor), or CCT128930 (Akt2 inhibitor). The activation of Akt was upregulated or downregulated by transfected with ROR2-Flag or ROR2-siRNA, respectively. Lastly, Wnt5a/ROR2 signaling does not alter the cell proliferation of MG-63 osteosarcoma cells.

Conclusions

Taken together, we demonstrate that ROR2 receptor responding to Wnt5a ligand activates PI3K/Akt/RhoA signaling and promotes the migration of osteosarcoma cells.
  相似文献   

5.
6.
7.

Background

3-Nitro-4-hydroxy phenyl arsenic acid, roxarsone, is widely used as an organic arsenic feed additive for livestock and poultry, which may increase the level of arsenic in the environment and the risk of exposure to arsenic in human. Little information is focused on the angiogenesis roxarsone-induced and its mechanism at present. This paper aims to study the role of PI3K/Akt signaling in roxarsone-induced angiogenesis in rat vascular endothelial cells and a mouse B16–F10 melanoma xenograft model.

Results

The results showed that treatment with 0.1–10.0 µmol/L roxarsone resulted in an increase in the OD rate in the MTT assay, the number of BrdU-positive cells in the proliferation assay, the migration distance in the scratch test and the number of meshes in tube formation assay. Further, treatment with 1.0 µmol/L roxarsone was associated with significantly higher phosphorylation of PI3K/Akt and expression of VEGF than the control treatment. The PI3K inhibitor was found to significantly combat the effects of 1.0 µmol/L roxarsone. Furthermore, roxarsone treatment was observed to increase the weight and volume of B16–F10 xenografts and VEGF expression and PI3K/Akt phosphorylation in a dose-dependent manner, with the 25 mg/kg dose having significant effects.

Conclusions

These results demonstrate that roxarsone has the ability to promote growth and tube formation in vascular endothelial cells and the growth of mouse B16–F10 xenografts. Further, the findings also indicate that PI3K/Akt signaling plays a regulatory role in roxarsone-induced angiogenesis in vivo and in vitro.
  相似文献   

8.

Objective

To suppress TNF-α-induced lipogenesis in sebocytes (associated with acne development) with microRNA-338-3p (miR-338-3p) and to explore the underlying mechanisms.

Results

TNF-α increased lipid droplet formation in sebocytes which were used as in vitro model of inflammation-induced acne. Flow cytometry and TLC assays validated that miR-338-3p could suppress TNF-α-induced lipid droplet formation, down-regulate the expression of PREX2a, and inactivate AKT signaling in sebocytes. In addition, suppression of AKT activity by the PI3 K and AKT inhibitors diminished TNF-α-induced lipogenesis. PREX2a siRNA mimics the effects of miR-338-3p on AKT phosphorylation and lipogenesis. PREX2a overexpression consistently restored lipogenesis and AKT phosphorylation attenuated by miR-338-3p.

Conclusions

MiR-338-3p suppresses the TNF-α-induced lipogenesis in sebocytes by targeting PREX2a and down-regulating PI3K/AKT signaling.
  相似文献   

9.

Background

The aim of this study is to explore the expression of alpha-synuclein (α-synuclein) in benign, atypical, and anaplastic meningiomas and determine its role in the malignant progression of meningiomas.

Methods

Expression of α-synuclein was measured in 44 meningioma samples by real-time PCR analysis. The effects of overexpression or knockdown of α-synuclein on meningioma cell growth, invasiveness, and tumorigenicity were determined.

Results

Atypical and anaplastic meningiomas displayed significantly greater levels of α-synuclein mRNA, relative to benign tumors. Depletion of α-synuclein decreased cell proliferation and colony formation and promoted apoptosis in IOMM-Lee meningioma cells, whereas overexpression of α-synuclein facilitated cell proliferation and colony formation in CH-157MN meningioma cells. Silencing of α-synuclein attenuated IOMM-Lee cell migration and invasion. In contrast, ectopic expression of α-synuclein increased the invasiveness of CH-157MN cells. In vivo studies further demonstrated that downregulation of α-synuclein significantly retarded meningioma growth in nude mice. At the molecular level, the phosphorylation levels of Akt, mTOR, p70S6K and 4EBP were significantly decreased in α-synuclein-depleted IOMM-Lee cells.

Conclusions

In conclusion, α-synuclein upregulation contributes to aggressive phenotypes of meningiomas via the Akt/mTOR pathway and thus represents a potential therapeutic target for malignant meningiomas.
  相似文献   

10.
11.
12.

Aim

To elucidate the hemodynamics of the uterine artery myomas by use of Doppler ultrasound and biomagnetic measurements.

Method

Twenty-four women were included in the study. Sixteen of them were characterised with large myomas whereas 8 of them with small ones. Biomagnetic signals of uterine arteries myomas were recorded and analyzed with Fourier analysis. The biomagnetic signals were distributed according to spectral amplitudes as high (140–300 ft/√Hz), low (50–110 ft/√Hz) and borderline (111–139 ft/√Hz). Uterine artery waveform measurements were evaluated by use of Pulsatility Index (PI) (normal value PI < 1.45).

Results

There was a statistically significant difference between large and small myomas concerning the waveform amplitudes (P < 0.0005) and the PI index (P < 0.0005). Specifically, we noticed high biomagnetic amplitudes in most large myomas (93.75 %) and low biomagnetic amplitudes in most small ones (87.5 %).

Conclusion

It is suggested that the biomagnetic recordings of uterine artery myomas could be a valuable modality in the estimation of the circulation of blood cells justifying the findings of Doppler velocimetry examination.
  相似文献   

13.

Introduction

Persons living with HIV (PLWH) are at higher risk for cardiovascular disease (CVD) events than uninfected persons. Current risk-stratification methods to define PLWH at highest risk for CVD events are lacking.

Methods

Using tandem flow injection mass spectrometry, we quantified plasma levels of 60 metabolites in 24 matched pairs of PLWH [1:1 with and without known coronary artery disease (CAD)]. Metabolite levels were reduced to interpretable factors using principal components analysis.

Results

Factors derived from short-chain dicarboxylacylcarnitines (SCDA) (p?=?0.08) and glutamine/valine (p?=?0.003) were elevated in CAD cases compared to controls.

Conclusion

SCDAs and glutamine/valine may be valuable markers of cardiovascular risk among persons living with HIV in the future, pending validation in larger cohorts.
  相似文献   

14.

Background

The objective of this study was to evaluate serum IGF-I levels in postmenopausal women with breast cancer treated primarily with raloxifene.

Methods

Twenty-two postmenopausal patients with operable, stage I or II, estrogen receptor-positive carcinomas participated in this study. Following confirmation of diagnosis, the patients received 60 mg of raloxifene for 28 days prior to definitive surgery. Blood samples were collected for evaluation of serum IGF-I levels prior to initiating medication and following a 28-day treatment course. Student's t-test for paired samples was used in the statistical analysis. Significance was established at p < 0.05.

Results

Mean serum IGF-I levels pre- and post-raloxifene treatment were 143.7 ± 9.7 ng/ml and 94.8 ± 7.6 ng/ml, respectively. This reduction in serum IGF-I levels following treatment with raloxifene was statistically significant (p < 0.001).

Conclusion

Raloxifene significantly reduced serum IGF-I levels in postmenopausal women with breast cancer.
  相似文献   

15.

Background

Gestational trophoblastic disease (GTD) is a heterogeneous group of disorders characterized by abnormal trophoblast tissue. Molar and non-molar hydropic placental changes are the most common forms of GTD. Differential diagnosis of GTD is sometimes problematic. Recently, p53 expression was identified as a good marker for distinguishing GTD types.

Aims

Comparison of p53 expression in partial hydatidiform mole (PHM) and hydropic abortion.

Methods

In this prospective cross-sectional study, molar and non-molar hydropic pregnancy specimens were collected. Immunohistochemical staining, based on the Labeled Streptavidin Biotin (LSAB) technique, was carried out on multiple 4 mm paraffin block sections prepared from formalin-fixed trophoblastic tissues. Polymer-based Envision was used to assess p53 tumor suppressor protein immunoreactivity. p53 expression was then compared between both groups.

Results

In the study, 40 patients were included: 20 with confirmed PHM and 20 with hydropic pregnancy. p53 protein was positive in 60% of patients with PHM and 25% of patients with hydropic pregnancy. The p53 positive rate was significantly higher in patients with PHM (p = 0.027). Moreover, patients with PHM had a significantly high grade of staining (p<0.001).

Conclusion

Our findings indicate that immunohistochemical analysis of p53 protein can be used to distinguish PHM and hydropic pregnancy.
  相似文献   

16.

Background

Despite the progress in neuroblastoma therapies the mortality of high-risk patients is still high (40–50%) and the molecular basis of the disease remains poorly known. Recently, a mathematical model was used to demonstrate that the network regulating stress signaling by the c-Jun N-terminal kinase pathway played a crucial role in survival of patients with neuroblastoma irrespective of their MYCN amplification status. This demonstrates the enormous potential of computational models of biological modules for the discovery of underlying molecular mechanisms of diseases.

Results

Since signaling is known to be highly relevant in cancer, we have used a computational model of the whole cell signaling network to understand the molecular determinants of bad prognostic in neuroblastoma. Our model produced a comprehensive view of the molecular mechanisms of neuroblastoma tumorigenesis and progression.

Conclusion

We have also shown how the activity of signaling circuits can be considered a reliable model-based prognostic biomarker.

Reviewers

This article was reviewed by Tim Beissbarth, Wenzhong Xiao and Joanna Polanska. For the full reviews, please go to the Reviewers’ comments section.
  相似文献   

17.

Objectives

To investigate the biological functions of microRNA-144-3p with respect to proliferation and apoptosis of human salivary adenoid carcinoma cell lines via mTOR.

Results

After transfection of microRNA-144-3p agomir, cell viability assays confirmed that the salivary adenoid carcinoma cell (SACC) proliferation was inhibited and apoptosis was induced. Dual luciferase reporter assay validated that the mammalian target of rapamycin (mTOR) was a direct target of miR-144-3p. Western blot, immunofluorescent analysis and a xenograft mouse model of adenoid cystic carcinoma indicated that miR-144-3p was a tumor suppressor and repressed mTOR expression and signaling in SACCs.

Conclusions

MicroRNA-144-3p inhibits proliferation and induces apoptosis of human salivary adenoid carcinoma cells by downregulating mTOR expression in vitro and in vivo.
  相似文献   

18.

Background

Use of low doses of digitalis to prevent the development of heart failure was advocated decades ago, but conflicting results of early animal studies dissuaded further research on this issue. Recent discoveries of digitalis effects on cell signal pathways prompted us to reexamine the possibility of this prophylactic action of digitalis. The specific aim of the present study was to determine if subinotropic doses of ouabain would prevent pressure overload-induced cardiac remodeling in the mouse by activating phosphoinositide 3-kinase α (PI3Kα).

Results

Studies were done on an existing transgenic mouse deficient in cardiac PI3Kα (p85-KO) but with normal cardiac contractility, a control mouse (Con), and on cultured adult cardiomyocytes. In Con myocytes, but not in p85-KO myocytes, ouabain activated PI3Kα and Akt, and caused cell growth. This occurred at low ouabain concentrations that did not activate the EGFR-Src/Ras/Raf/ERK cascade. Con and p85-KO mice were subjected to transverse aortic constriction (TAC) for 8 weeks. A subinotropic dose of ouabain (50 µg/kg/day) was constantly administrated by osmotic mini-pumps for the first 4 weeks. All mice were monitored by echocardiography throughout. Ouabain early treatment attenuated TAC-induced cardiac hypertrophy and fibrosis, and improved cardiac function in TAC-operated Con mice but not in TAC-operated p85-KO mice. TAC downregulated α2-isoform of Na+/K+-ATPase but not its α1-isoform in Con hearts, and ouabain treatment prevented the downregulation of α2-isoform. TAC-induced reduction of α2-isoform did not occur in p85-KO hearts.

Conclusions

Our results show that (a) safe doses of ouabain prevent or delay cardiac remodeling of pressure overloaded mouse heart; and (b) these prophylactic effects are due to ouabain binding to α2-isoform resulting in the selective activation of PI3Kα. Our findings also suggest that potential prophylactic use of digitalis for prevention of heart failure in man deserves serious consideration.
  相似文献   

19.

Introduction

Boiling ethanol extraction is a frequently used method for metabolomics studies of biological samples. However, the stability of several central carbon metabolites, including nucleotide triphosphates, and the influence of the cellular matrix on their degradation have not been addressed.

Objectives

To study how a complex cellular matrix extracted from yeast (Saccharomyces cerevisiae) may affect the degradation profiles of nucleotide triphosphates extracted under boiling ethanol conditions.

Methods

We present a double-labelling LC–MS approach with a 13C-labeled yeast cellular extract as complex surrogate matrix, and 13C15N-labeled nucleotides as internal standards, to study the effect of the yeast matrix on the degradation of nucleotide triphosphates.

Results

While nucleotide triphosphates were degraded to the corresponding diphosphates in pure solutions, degradation was prevented in the presence of the yeast matrix under typical boiling ethanol extraction conditions.

Conclusions

Extraction of biological samples under boiling ethanol extraction conditions that rapidly inactivate enzyme activity are suitable for labile central energy metabolites such as nucleotide triphosphates due to the stabilizing effect of the yeast matrix. The basis of this phenomenon requires further study.

Graphical abstract

  相似文献   

20.

Background

Knockdown of Akt1 promotes Epithelial-to-Mesenchymal Transition in breast cancer cells. However, the mechanisms are not completely understood.

Methods

Western blotting, immunofluorescence, luciferase assay, real time PCR, ELISA and Matrigel invasion assay were used to investigate how Akt1 inhibition promotes breast cancer cell invasion in vitro. Mouse model of lung metastasis was used to measure in vivo efficacy of Akt inhibitor MK2206 and its combination with Gefitinib.

Results

Knockdown of Akt1 stimulated β-catenin nuclear accumulation, resulting in breast cancer cell invasion. β-catenin nuclear accumulation induced by Akt1 inhibition depended on the prolonged activation of EGFR signaling pathway in breast cancer cells. Mechanistic experiments documented that knockdown of Akt1 inactivates PIKfyve via dephosphorylating of PIKfyve at Ser318 site, resulting in a decreased degradation of EGFR signaling pathway. Inhibition of Akt1 using MK2206 could induce an increase in the expression of EGFR and β-catenin in breast cancer cells. In addition, MK2206 at a low dosage enhance breast cancer metastasis in a mouse model of lung metastasis, while an inhibitor of EGFR tyrosine kinase Gefitinib could potentially suppress breast cancer metastasis induced by Akt1 inhibition.

Conclusion

EGFR-mediated β-catenin nuclear accumulation is critical for Akt1 inhibition-induced breast cancer metastasis.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号