首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Final grain dry weight, a component of yield in wheat, is dependent on the duration and the rate of grain filling. The purpose of the study was to compare the grain filling patterns between common wheat, (Triticum aestivum L.), and durum wheat, (Triticum turgidum L. var. durum), and investigate relationships among grain filling parameters, yield components and the yield itself. The most important variables in differentiating among grain filling curves were final grain dry weight (W) for common wheat genotypes and grain filling rate (R) for durum wheat genotypes; however, in all cases the sets of variables important in differentiating among grain filling curves were extended to either two or all three parameters. Furthermore, in one out of three environmental conditions and for both groups of genotypes, the most important parameter in the set was grain filling duration (T). It indicates significant impact of environmental conditions on dry matter accumulation and the mutual effect of grain filling duration and its rate on the final grain dry weight. The medium early anthesis date could be associated with further grain weight and yield improvements in wheat. Grain filling of earlier genotypes occurs in more temperate environments, which provides enough time for gradual grain fill and avoids the extremes of temperature and the stress of dry conditions.  相似文献   

2.
The wheat grain is the most important organ for human food and therefore is the target for much research focused on modifying its composition to improve nutritional and functional components. Genetic transformation provides a precise tool to alter the composition of wheat grain by expressing new genes or by down-regulating groups of proteins encoded by multigene families such as gliadins, which contain clusters of epitopes that are active groups in triggering celiac disease. For such work, specific promoters are required to express such constructs in the wheat endosperm. In the present study we report the isolation and characterization of a γ-gliadin promoter from transgenic wheat, and the analysis of gliadin synthesis during grain development in bread wheat by Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI/TOF MS). The γ-gliadin promoter fragment was isolated from bread wheat by genome walking and was re-introduced, driving the expression of the gusA gene, by particle bombardment, giving fifteen independent transgenic lines. Detailed analysis of the sequence of the 885 bp promoter fragment showed that it contains three prolamin boxes but only one is conserved according to the consensus sequence reported. The AACA/TA motif is present twice in published γ-gliadin promoter sequences. The RY element i.e., CATGCAT or CATGCAC, is also present twice in the published promoter. Transgenic lines were classified as high, medium, and low expressers. The expression of the gusA gene was found only in the seeds of the transgenic lines. GUS staining was first detected in the outer endosperm of the lobes, and then it extended to the whole outer endosperm. GUS staining was not found in the aleurone layer nor in the embryo. The qRT-PCR data confirmed the data obtained by GUS staining. The expression of the gusA gene determined by qRT-PCR for the high expresser line (B281) was 4 and 8 times higher than that of medium (B282) and low (B286) expresser lines, respectively. MALDI/TOF-MS showed that gliadins exhibited different patterns of synthesis during the course of seed maturation. Thus, gliadins with masses higher than 36,000 Da were synthesised within the first 12 days post anthesis while those with masses lower than 36,000 Da were synthesised later. Results of GUS staining, qRT-PCR and MALDI/TOF-MS showed that the γ-gliadin promoter reported in this work could be a good candidate to downregulate wheat gliadins.  相似文献   

3.
In Mediterranean regions drought is the major factor limiting spring barley and durum wheat grain yields. This study aimed to compare spring barley and durum wheat root and shoot responses to drought and quantify relationships between root traits and water uptake under terminal drought.One spring barley(Hordeum vulgare L. cv. Rum) and two durum wheat Mediterranean cultivars(Triticum turgidum L. var durum cvs Hourani and Karim) were examined in soil‐column experiments under well watered and drought conditions. Root system architecture traits, water uptake, and plant growth were measured. Barley aerial biomass and grain yields were higher than for durum wheat cultivars in well watered conditions. Drought decreased grain yield more for barley(47%) than durum wheat(30%, Hourani). Root‐to‐shoot dry matter ratio increased for durum wheat under drought but not for barley, and root weight increased for wheat in response todrought but decreased for barley. The critical root length density(RLD) and root volume density(RVD) for 90% available water capture for wheat were similar to(cv. Hourani) or lower than(cv. Karim) for barley depending on wheat cultivar. For both species, RVD accounted for a slightly higher proportion of phenotypic variation in water uptake under drought than RLD.  相似文献   

4.
5.
Heat Stress in Wheat during Reproductive and Grain-Filling Phases   总被引:4,自引:0,他引:4  
Ambient temperatures have increased since the beginning of the century and are predicted to continue rising under climate change. Such increases in temperature can cause heat stress: a severe threat to wheat production in many countries, particularly when it occurs during reproductive and grain-filling phases. Heat stress reduces plant photosynthetic capacity through metabolic limitations and oxidative damage to chloroplasts, with concomitant reductions in dry matter accumulation and grain yield. Genotypes expressing heat shock proteins are better able to withstand heat stress as they protect proteins from heat-induced damage. Heat tolerance can be improved by selecting and developing wheat genotypes with heat resistance. Wheat pre-breeding and breeding may be based on secondary traits like membrane stability, photosynthetic rate and grain weight under heat stress. Nonetheless, improvement in grain yield under heat stress implies selecting genotypes for grain size and rate of grain filling. Integrating physiological and biotechnological tools with conventional breeding techniques will help to develop wheat varieties with better grain yield under heat stress during reproductive and grain-filling phases. This review discusses the impact of heat stress during reproductive and grain-filling stages of wheat on grain yield and suggests strategies to improve heat stress tolerance in wheat.  相似文献   

6.
Higher temperatures caused by future climate change will bring more frequent heat stress events and pose an increasing risk to global wheat production. Crop models have been widely used to simulate future crop productivity but are rarely tested with observed heat stress experimental datasets. Four wheat models (DSSAT‐CERES‐Wheat, DSSAT‐Nwheat, APSIM‐Wheat, and WheatGrow) were evaluated with 4 years of environment‐controlled phytotron experimental datasets with two wheat cultivars under heat stress at anthesis and grain filling stages. Heat stress at anthesis reduced observed grain numbers per unit area and individual grain size, while heat stress during grain filling mainly decreased the size of the individual grains. The observed impact of heat stress on grain filling duration, total aboveground biomass, grain yield, and grain protein concentration (GPC) varied depending on cultivar and accumulated heat stress. For every unit increase of heat degree days (HDD, degree days over 30 °C), grain filling duration was reduced by 0.30–0.60%, total aboveground biomass was reduced by 0.37–0.43%, and grain yield was reduced by 1.0–1.6%, but GPC was increased by 0.50% for cv Yangmai16 and 0.80% for cv Xumai30. The tested crop simulation models could reproduce some of the observed reductions in grain filling duration, final total aboveground biomass, and grain yield, as well as the observed increase in GPC due to heat stress. Most of the crop models tended to reproduce heat stress impacts better during grain filling than at anthesis. Some of the tested models require improvements in the response to heat stress during grain filling, but all models need improvements in simulating heat stress effects on grain set during anthesis. The observed significant genetic variability in the response of wheat to heat stress needs to be considered through cultivar parameters in future simulation studies.  相似文献   

7.
8.
Grapes are commercially grown worldwide for fresh fruit and wine. They are mainly classified into bunch and muscadine grapes. These species differ in their sugar content and composition, photosynthetic efficiency and tolerance to abiotic and biotic stresses. Grape berry relies on carbohydrates produced during photosynthesis to support its development and composition. In view of the unique physiology and genetic make‐up of muscadine grape, a proteomics study was performed to increase our knowledge of Vitis leaf proteome in order to improve enological and disease tolerance characteristics of grape species. A high throughput two‐dimensional gel electrophoresis (2‐DE) was conducted on muscadine, bunch and hybrid bunch leaf proteins. The differentially expressed proteins were excised from 2‐DE gels, subjected to in‐gel trypsin digestion, and analysed in MALDI/TOF mass spectrometer. The mass spectra were collected and protein identification was performed by searching against Viridiplantae database using Matrix Science algorithm. Proteins were mapped to universal protein resource to study gene ontology. We have discovered >255 proteins with pIs between 3.5 and 8.0 and molecular weight between 12 and 100 kDa among the Vitis species. Comparative analysis of leaf proteome showed that 54 polypeptides varied qualitatively and quantitatively among the three Vitis species studied. Of these, seven proteins were unique to muscadine, two proteins were present in both muscadine and bunch, while 28 proteins were common to all the three species. Bioinformatic analysis of these proteins showed that they are involved in signal transduction pathway, transport of metabolites, energy metabolism, protein trafficking, photosynthesis and defence. We have also identified proteins unique to muscadine grape that are involved in defence and stress tolerance. In addition, photosynthesis‐related proteins were found to be more abundant in Vitis vinifera grape compared to other Vitis species.  相似文献   

9.
10.
11.
We previously reported that transgenic wheat (Triticum aestivum L.) carrying a maize (Zea mays L.) gene (Zmeftu1) for chloroplast protein synthesis elongation factor, EF-Tu, displays reduced thermal aggregation of leaf proteins, reduced injury to photosynthetic membranes (thylakoids), and enhanced rate of CO2 fixation following exposure to heat stress (18 h at 45°C) [Fu et al. in Plant Mol Biol 68:277–288, 2008]. In the current study, we investigated the segregation pattern and expression of the transgene Zmeftu1 and determined the grain yield of transgenic plants after exposure to a brief heat stress (18 h at 45°C). We also assessed thermal aggregation of soluble leaf proteins in transgenic plants, testing the hypothesis that increased levels of EF-Tu will lead to a non-specific protection of leaf proteins against thermal aggregation. The transgenic wheat displayed a single-gene pattern of segregation of Zmeftu1. Zmeftu1 was expressed, and the transgenic plants synthesized and accumulated three anti-EF-Tu cross-reacting polypeptides of similar molecular mass but different pI, suggesting the possibility of posttranslational modification of this protein. The transgenic plants also showed better grain yield after exposure to heat stress compared with their non-transgenic counterparts. Soluble leaf proteins of various molecular masses displayed lower thermal aggregation in transgenic than in non-transgenic wheat. The results suggest that overexpression of chloroplast EF-Tu can be beneficial to wheat tolerance to heat stress. Moreover, the results also support the hypothesis that EF-Tu contributes to heat tolerance by acting as a molecular chaperone and protecting heat-labile proteins from thermal aggregation in a non-specific manner.  相似文献   

12.
Durum wheat (Triticum turgidum ssp. durum, 2n = 4x = 28, genomes AB) is an economically important cereal used as the raw material to make pasta and semolina. In this paper we present the construction and characterization of a bacterial artificial chromosome (BAC) library of tetraploid durum wheat cv. Langdon. This variety was selected because of the availability of substitution lines that facilitate the assignment of BACs to the A and B genome. The selected Langdon line has a 30-cM segment of chromosome 6BS from T. turgidum ssp. dicoccoides carrying a gene for high grain protein content, the target of a positional cloning effort in our laboratory. A total of 516,096 clones were organized in 1,344 384-well plates and blotted on 28 high-density filters. Ninety-eight percent of these clones had wheat DNA inserts (0.3% chloroplast DNA, 1.4% empty clones and 0.3% empty wells). The average insert size of 500 randomly selected BAC clones was 131 kb, resulting in a coverage of 5.1-fold genome equivalents for each of the two genomes, and a 99.4% probability of recovering any gene from each of the two genomes of durum wheat. Six known copy-number probes were used to validate this theoretical coverage and gave an estimated coverage of 5.8-fold genome equivalents. Screening of the library with 11 probes related to grain storage proteins and starch biosynthesis showed that the library contains several clones for each of these genes, confirming the value of the library in characterizing the organization of these important gene families. In addition, characterization of fingerprints from colinear BACs from the A and B genomes showed a large differentiation between the A and B genomes. This library will be a useful tool for evolutionary studies in one of the best characterized polyploid systems and a source of valuable genes for wheat. Clones and high-density filters can be requested at Communicated by P. LangridgeThe first two authors contributed equally to the investigation  相似文献   

13.
14.
Chicory (Cichorium intybus) roots contain high amounts of inulin, a fructose polymer used as a storage carbohydrate by the plant and as a human dietary and prebiotic compound. We performed 2‐D electrophoretic analysis of proteins from root material before the first freezing period. The proteins were digested with trypsin and the peptides analyzed by MS (MALDI‐TOF/TOF). From the 881 protein spots analyzed, 714 proteins corresponded to a database accession, 619 of which were classified into functional categories. Besides expected proteins (e.g. related to metabolism, energy, protein synthesis, or cell structure), other well‐represented categories were proteins related to folding and stability (49 spots), proteolysis (49 spots), and the stress response (67 spots). The importance of abiotic stress response was confirmed by the observation that 7 of the 21 most intense protein spots are known to be involved in cold acclimation. These results suggest a major effect of the low temperature period that preceded root harvesting.  相似文献   

15.
Aims: To propose a universal workflow of sample preparation method for the identification of highly pathogenic bacteria by MALDI‐TOF MS. Methods and Results: Fifteen bacterial species, including highly virulent Gram‐positive (Bacillus anthracis and Clostridium botulinum) and Gram‐negative bacteria (Brucella melitensis, Burkholderia mallei, Francisella tularensis, Shigella dysenteriae, Vibrio cholerae, Yersinia pestis and Legionella pneumophila), were employed in the comparative study of four sample preparation methods compatible with MALDI‐TOF MS. The yield of bacterial proteins was determined by spectrophotometry, and the quality of the mass spectra, recorded in linear mode in the range of 2000–20 000 Da, was evaluated with respect to the information content (number of signals) and quality (S/N ratio). Conclusions: Based on the values of protein concentration and spectral quality, the method using combination of ethanol treatment followed by extraction with formic acid and acetonitrile was the most efficient sample preparation method for the identification of highly pathogenic bacteria using MALDI‐TOF MS. Significance and Impact of the Study: The method using ethanol/formic acid generally shows the highest extraction efficacy and the spectral quality with no detrimental effect caused by storage. Thus, this can be considered as a universal sample preparation method for the identification of highly virulent micro‐organisms by MALDI‐TOF mass spectrometry.  相似文献   

16.
 Low-molecular-weight glutenin subunits (LMW-GSs) are wheat endosperm proteins mostly encoded by genes located at the Glu-3 loci. These proteins are of particular interest in durum wheat because a correlation between LMW-GSs encoded by genes at the Glu-B3 locus and the pasta-making quality of durum wheat semolina has been shown. We isolated and characterized two allelic lmw-gs genes located at the Glu-B3 locus and present in durum wheat lines displaying different qualitative properties. The clones pLMW1CL and λLMW3.1 were found to contain allelic sequences encoding LMW-GSs belonging to the good and poor quality-related groups named LMW-2 and LMW-1, respectively. The LMW-GSs specified by these genes have very large repetitive domains which are composed of repeats regularly distributed along the domain. The main difference between these two proteins is an insertion of 13 amino acids within the repetitive domain which, by itself, seems insufficient to explain the qualitative differences between LMW-2 and LMW-1. These results further support the hypothesis that the greater amount of LMW-2, rather than sequence peculiarities, accounts for the better quality observed in durum wheat cultivars possessing these subunits. The characterization of the complete primary structure of these alleles, other than providing information for an understanding of the structure-function relationship among LMW-GSs and furnishing basic material for wheat engineering, should also assist in our understanding of the evolutionary relationship between the different lmw-gs genes. Received: 8 May 1998 / Accepted: 5 August 1998  相似文献   

17.
Mammary gland is made up of a branching network of ducts that end in alveoli. Terminally differentiated mammary epithelial cells (MECs) constitute the innermost layer of aveoli. They are milk‐secreting cuboidal cells that secrete milk proteins during lactation. Little is known about the expression profile of proteins in the metabolically active MECs during lactation or their functional role in the lactation process. In the present investigation, we have reported the proteome map of MECs in lactating cows using 2DE MALDI‐TOF/TOF MS and 1D‐Gel‐LC‐MS/MS. MECs were isolated from milk using immunomagnetic beads and confirmed by RT‐PCR and Western blotting. The 1D‐Gel‐LC‐MS/MS and 2DE‐MS/MS based approaches led to identification of 431 and 134 proteins, respectively, with a total of 497 unique proteins. Proteins identified in this study were clustered into functional groups using bioinformatics tools. Pathway analysis of the identified proteins revealed 28 pathways (p < 0.05) providing evidence for involvement of various proteins in lactation function. This study further provides experimental evidence for the presence of many proteins that have been predicted in annotated bovine genome. The data generated further provide a set of bovine MEC‐specific proteins that will help the researchers to understand the molecular events taking place during lactation.  相似文献   

18.
Wang J  Qi P  Wei Y  Liu D  Fedak G  Zheng Y 《Journal of genetics》2010,89(4):539-554
The tribe Triticeae includes major cereal crops (bread wheat, durum wheat, triticale, barley and rye), as well as abundant forage and lawn grasses. Wheat and its wild related species possess numerous favourable genes for yield improvement, grain quality enhancement, biotic and abiotic stress resistance, and constitute a giant gene pool for wheat improvement. In recent years, significant progress on molecular characterization and functional analysis of elite genes in wheat and its related species have been achieved. In this paper, we review the cloned functional genes correlated with grain quality, biotic and abiotic stress resistance, photosystem and nutrition utilization in wheat and its related species.  相似文献   

19.
The Nicotiana tabacum Bright‐Yellow‐2 (BY2) cell line is one of most commonly used plant suspension cell lines and offers interesting properties, such as fast growth, amenability to genetic transformation, and synchronization of cell division. To build a proteome reference map of BY2 cell proteins, we isolated the soluble proteins from N. tabacum BY2 cells at the end of the exponential growth phase and analyzed them by 2‐DE and MALDI TOF‐TOF. Of the 1422 spots isolated, 795 were identified with a significant score, corresponding to 532 distinct proteins.  相似文献   

20.
Identification and characterization of proteins involved in salt tolerance are imperative for revealing its genetic mechanisms. In this study, ionic and proteomic responses of a Tibetan wild barley XZ16 and a well‐known salt‐tolerant barley cv. CM72 were analyzed using inductively coupled plasma‐optical emission spectrometer, 2DE, and MALDI‐TOF/TOF MS techniques to determine salt‐induced differences in element and protein profiles between the two genotypes. In total, 41 differentially expressed proteins were identified in roots and leaves, and they were associated with ion homeostasis, cell redox homeostasis, metabolic process, and photosynthesis. Under salinity stress, calmodulin, Na/K transporters, and H+‐ATPases were involved in establishment of ion homeostasis for barley plants. Moreover, ribulose‐1,5‐bisphosphate carboxylase/oxygenase activase and oxygen‐evolving enhancer proteins were significantly upregulated under salinity stress, indicating the great impact of salinity on photosynthesis. In comparison with CM72, XZ16 had greater relative dry weight and lower Na accumulation in the shoots under salinity stress. A higher expression of HvNHX1 in the roots, and some specific proteins responsible for ion homeostasis and cell redox homeostasis, was also found in XZ16 exposed to salt stress. The current results showed that Tibetan wild barley XZ16 and cultivated barley cultivar CM72 differ in the mechanism of salt tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号