首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ExoS is a bifunctional Type III cytotoxin of Pseudomonas aeruginosa with N-terminal Rho GTPase-activating protein (RhoGAP) and C-terminal ADP-ribosyltransferase domains. Although the ExoS RhoGAP inactivates Cdc42, Rac, and RhoA in vivo, the relationship between ExoS RhoGAP and the eukaryotic regulators of Rho GTPases is not clear. The present study investigated the roles of Rho GTPase guanine nucleotide disassociation inhibitor (RhoGDI) in the reorganization of actin cytoskeleton mediated by ExoS RhoGAP. A green fluorescent protein-RhoGDI fusion protein was engineered and found to elicit actin reorganization through the inactivation of Rho GTPases. Green fluorescent protein-RhoGDI and ExoS RhoGAP cooperatively stimulated actin reorganization and translocation of Cdc42 from membrane to cytosol, and a RhoGDI mutant, RhoGDI(I177D), that is defective in extracting Rho GTPases off the membrane inhibited the actions of RhoGDI and ExoS RhoGAP on the translocation of Cdc42 from membrane to cytosol. A human RhoGDI small interfering RNA was transfected into HeLa cells to knock down 90% of the endogenous RhoGDI expression. HeLa cells with knockdown RhoGDI were resistant to the reorganization of the actin cytoskeleton elicited by type III-delivered ExoS RhoGAP. This indicates that ExoS RhoGAP and RhoGDI function in series to inactivate Rho GTPases, in which RhoGDI extracting GDP-bound Rho GTPases off the membrane and sequestering them in cytosol is the rate-limiting step in Rho GTPase inactivation. A eukaryotic GTPase-activating protein, p50RhoGAP, showed a similar cooperativity with RhoGDI on actin reorganization, suggesting that ExoS RhoGAP functions as a molecular mimic of eukaryotic RhoGAPs to inactivate Rho GTPases through RhoGDI.  相似文献   

2.
Rho GTPases share a common inhibitor, Rho guanine nucleotide dissociation inhibitor (RhoGDI), which regulates their expression levels, membrane localization, and activation state. The selective dissociation of individual Rho GTPases from RhoGDI ensures appropriate responses to cellular signals, but the underlying mechanisms are unclear. Diacylglycerol kinase ζ (DGKζ), which phosphorylates diacylglycerol to yield phosphatidic acid, selectively dissociates Rac1 by stimulating PAK1-mediated phosphorylation of RhoGDI on Ser-101/174. Similarly, phosphorylation of RhoGDI on Ser-34 by protein kinase Cα (PKCα) selectively releases RhoA. Here we show DGKζ is required for RhoA activation and Ser-34 phosphorylation, which were decreased in DGKζ-deficient fibroblasts and rescued by wild-type DGKζ or a catalytically inactive mutant. DGKζ bound directly to the C-terminus of RhoA and the regulatory arm of RhoGDI and was required for efficient interaction of PKCα and RhoA. DGKζ-null fibroblasts had condensed F-actin bundles and altered focal adhesion distribution, indicative of aberrant RhoA signaling. Two targets of the RhoA effector ROCK showed reduced phosphorylation in DGKζ-null cells. Collectively our findings suggest DGKζ functions as a scaffold to assemble a signaling complex that functions as a RhoA-selective, GDI dissociation factor. As a regulator of Rac1 and RhoA activity, DGKζ is a critical factor linking changes in lipid signaling to actin reorganization.  相似文献   

3.
Rho GTPases are Ras-related GTPases that regulate a variety of cellular processes. In the sea urchin Strongylocentrotus purpuratus, RhoA in the oocyte associates with the membrane of the cortical granules and directs their movement from the cytoplasm to the cell cortex during maturation to an egg. RhoA also plays an important role regulating the Na(+) -H(+) exchanger activity, which determines the internal pH of the cell during the first minutes of embryogenesis. We investigated how this activity may be regulated by a guanine-nucleotide dissociation inhibitor (RhoGDI). The sequence of this RhoA regulatory protein was identified in the genome on the basis of its similarity to other RhoGDI species, especially for key segments in the formation of the isoprenyl-binding pocket and in interactions with the Rho GTPase. We examined the expression and the subcellular localization of RhoGDI during oogenesis and in different developmental stages. We found that RhoGDI mRNA levels were high in eggs and during cleavage divisions until blastula, when it disappeared, only to reappear in gastrula stage. RhoGDI localization overlaps the presence of RhoA during oogenesis and in embryonic development, reinforcing the regulatory premise of the interaction. By use of recombinant protein interactions in vitro, we also find that these two proteins selectively interact. These results support the hypothesis of a functional relationship in vivo and now enable mechanistic insight for the cellular and organelle rearrangements that occur during oogenesis and embryonic development.  相似文献   

4.
RhoGDI (Rho GDP-dissociation inhibitor alpha, or RhoGDIα) was identified as a regulator of Rho GTPases, but its role in cancer remains controversial. In this study, increased expression of RhoGDI was detected in hepatocellular carcinoma (HCC) cell lines and tissues with highly metastatic potential. RhoGDI overexpression correlated with postoperative distant metastasis. Enforced expression of RhoGDI in HCC cells significantly enhanced cell proliferation and migration. Conversely, knockdown of RhoGDI caused an inhibition of the aggressive phenotypes of HCC cells. Furthermore, RhoGDI up-regulated Rho, but not Rac, and enhanced PI3K/AKT and MAPK pathway activity. Our findings suggest that RhoGDI overexpression is a predictor of distant metastasis and plays an important role in the progression of HCC.  相似文献   

5.
6.
The Rho GDP dissociation inhibitor (RhoGDI) can bind to small GTPases and keep them in a biologically inactive state in cytoplasm, through which it affects actin polymerization and cell motility. However, mechanisms underlying how RhoGDI regulates Rho GTPase complex formation/membrane extraction/GTPase dissociation remain largely unexplored. Our previous studies reported that X-linked inhibitor of apoptosis protein (XIAP) interacted with RhoGDI via its RING domain and negatively modulated RhoGDI SUMOylation and HCT116 cancer cell migration. Here, we identified that RhoGDI SUMOylation specifically occurred at Lys-138, which was inhibited by XIAP domain. We further demonstrated that RhoGDI SUMOylation at Lys-138 was crucial for inhibiting actin polymerization and cytoskeleton formation as well as cancer cell motility. Moreover, SUMO-RhoGDI had a much higher binding affinity to small Rho GTPase compared with the un-SUMOylated form of RhoGDI. Taken together, our study demonstrated a novel modification of RhoGDI, SUMOylation at Lys-138, which played a key role in regulating Rho GTPase activation in cancer cells. The physiological regulation of RhoGDI SUMOylation by the RING domain of XIAP may account for modulation of cancer cell invasion and metastasis by XIAP.  相似文献   

7.
The regulation of Rho GTPase activities and expression is critical in the development and function of the kidney. Rho GTPase activities and cytosol–membrane cycling are regulated by Rho GDP Dissociation Inhibitor (RhoGDI), and RhoGDI knockout mice develop defects in kidney structure and function that lead to death due to renal failure. It is therefore important to understand the changes in RhoGDI-regulated Rho GTPase activities and cell morphology that lead to kidney failure in RhoGDI (−/−) mice.Here, we characterize a renal mesangial cell line derived from the RhoGDI (−/−) mouse in which we verify the absence of GDI proteins. In the absence of RhoGDI, we show an increase in the specific activity of Rac1, and to a lesser extent, RhoA and Cdc42 GTPases in these cells. This is accompanied by a compensatory decrease in the steady-state protein levels of Rho GTPases. Morphological analysis of RhoGDI (−/−) mesangial cells reveals a decrease in cell spreading and in focal contacts compared to wild-type cells. Finally, RhoGDI (−/−) mesangial cells show a decreased ability to proliferate and survive. These functional and structural changes are likely to contribute to the defects in renal architecture and function observed in the RhoGDI (−/−) mouse.  相似文献   

8.
The small GTPases of the Rho family play a key role in actin cytoskeletal organization. In plants, a novel Rho subfamily, called ROP (Rho of plants), has been found. In Arabidopsis, 12 ROP GTPases have been identified which differ mainly at their C-termini. To test the localization of two members of this subfamily (AtROP4 and AtROP6), we have generated translational fusions with the green fluorescent protein (GFP). Microscopic analysis of transiently transfected BY2 cells revealed a predominant localization of AtROP4 in the perinuclear region, while AtROP6 was localized almost exclusively to the plasma membrane. Swapping of the AtROP4 and AtROP6 C-termini produced a change in localization. As RhoGDIs are known to bind to the C-terminus of GTPases of the Rho family, we searched for ArabidopsisRhoGDI genes. We identified the AtRhoGDI1gene and mapped it to chromosome 3. AtRhoGDI1 encodes a 22.5 kDa protein which contains highly conserved amino acids in the isoprene binding pocket and exhibits 29% to 37% similarity to known mammalian RhoGDI homologues. The AtRhoGDI1 gene was expressed in all tissues studied. Using the yeast two-hybrid system, we showed specific interaction of AtRhoGDI1 with both AtROP4 and AtROP6 as well as with their GTP-locked mutants, but not with a GTPase of the RAB family. Recombinant GST-AtRhoGDI1 could bind GFP-AtROP4 from transgenic tobacco BY2 cell extracts, confirming the interaction observed with the two-hybrid system.these authors contributed equally to the work  相似文献   

9.
10.
The malignant brain cancer glioblastoma multiforme (GBM) displays invasive growth behaviors that are regulated by extracellular cues within the neural microenvironment. The adhesion and signaling pathways that drive GBM cell invasion remain largely uncharacterized. Here we use human GBM cell lines, primary patient samples, and preclinical mouse models to demonstrate that integrin αvβ8 is a major driver of GBM cell invasion. β8 integrin is overexpressed in many human GBM cells, with higher integrin expression correlating with increased invasion and diminished patient survival. Silencing β8 integrin in human GBM cells leads to impaired tumor cell invasion due to hyperactivation of the Rho GTPases Rac1 and Cdc42. β8 integrin coimmunoprecipitates with Rho-GDP dissociation inhibitor 1 (RhoGDI1), an intracellular signaling effector that sequesters Rho GTPases in their inactive GDP-bound states. Silencing RhoGDI1 expression or uncoupling αvβ8 integrin–RhoGDI1 protein interactions blocks GBM cell invasion due to Rho GTPase hyperactivation. These data reveal for the first time that αvβ8 integrin, via interactions with RhoGDI1, regulates activation of Rho proteins to promote GBM cell invasiveness. Hence targeting the αvβ8 integrin–RhoGDI1 signaling axis might be an effective strategy for blocking GBM cell invasion.  相似文献   

11.
Protein prenylation is a post-translational modification where farnesyl or geranylgeranyl groups are enzymatically attached to a C-terminal cysteine residue. This modification is essential for the activity of small cellular GTPases, as it allows them to associate with intracellular membranes. Dissociated from membranes, prenylated proteins need to be transported through the aqueous cytoplasm by protein carriers that shield the hydrophobic anchor from the solvent. One such carrier is Rho GDP dissociation inhibitor (RhoGDI). Recently, it was shown that prenylated Rho proteins that are not associated with RhoGDI are subjected to proteolysis in the cell. We hypothesized that the role of RhoGDI might be not only to associate with prenylated proteins but also to regulate the prenylation process in the cell. This idea is supported by the fact that RhoGDI binds both unprenylated and prenylated Rho proteins with high affinity in vitro, and hence, these interactions may affect the kinetics of prenylation. We addressed this question experimentally and found that RhoGDI increased the catalytic efficiency of geranylgeranyl transferase-I in RhoA prenylation. Nevertheless, we did not observe formation of a ternary RhoGDI∗RhoA∗GGTase-I complex, indicating sequential operation of geranylgeranyltransferase-I and RhoGDI. Our results suggest that RhoGDI accelerates Rho prenylation by kinetically trapping the reaction product, thereby increasing the rate of product release.  相似文献   

12.
The GDP dissociation inhibitors (GDIs) are pivotal regulators of Rho GTPases, which are essential for tumor progression, particularly in the area of metastasis. One member of GDIs was identified as RhoGDI (Rho GDP-dissociation inhibitor alpha, or RhoGDIalpha), but little is known about this protein in tumors. In this study, we used comparative proteomic analysis to show that RhoGDI is markedly up-regulated in metastatic colorectal cancer (CRC). The elevated level of RhoGDI protein in metastatic CRC was confirmed by Western blot at the tissue ( n = 24) and cell ( n = 6) levels. Further, we analyzed RhoGDI protein expression in 126 clinicopathologically characterized CRC cases by immunohistochemistry. Statistical analysis showed that there were significant differences of RhoGDI overexpression in patients categorized according to tumor invasion ( p = 0.018), lymph node metastasis ( p = 0.001) and clinical stage ( p = 0.009). A trend was also identified between high expression of RhoGDI and shorter overall survival ( p = 0.013). In the present work, we also analyzed the effect of RhoGDI on CRC cell line. Gene transfection-mediated overexpression of RhoGDI in HT29 cells, containing a low detectable level of endogenous RhoGDI, resulted in a significant increase in cell proliferation and motility in vitro. These data suggest that RhoGDI may promote CRC progression and metastasis by stimulating tumor cell growth and migration.  相似文献   

13.
RhoA and Rac1 have been implicated in the mechanism of CCK-induced amylase secretion from pancreatic acini. In all cell types studied to date, inactive Rho GTPases are present in the cytosol bound to the guanine nucleotide dissociation inhibitor RhoGDI. Here, we identified the switch mechanism regulating RhoGDI1-Rho GTPase dissociation and RhoA translocation upon CCK stimulation in pancreatic acini. We found that both Gα13 and PKC, independently, regulate CCK-induced RhoA translocation and that the PKC isoform involved is PKCα. Both RhoGDI1 and RhoGDI3, but not RhoGDI2, are expressed in pancreatic acini. Cytosolic RhoA and Rac1 are associated with RhoGDI1, and CCK-stimulated PKCα activation releases the complex. Overexpression of RhoGDI1, by binding RhoA, inhibits its activation, and thereby, CCK-induced apical amylase secretion. RhoA translocation is also inhibited by RhoGDI1. Inactive Rac1 influences CCK-induced RhoA activation by preventing RhoGDI1 from binding RhoA. By mutational analysis we found that CCK-induced PKCα phosphorylation on RhoGDI1 at Ser96 releases RhoA and Rac1 from RhoGDI1 to facilitate Rho GTPases signaling.  相似文献   

14.
The guanine dissociation inhibitor RhoGDI consists of a folded C-terminal domain and a highly flexible N-terminal region, both of which are essential for biological activity, that is, inhibition of GDP dissociation from Rho GTPases, and regulation of their partitioning between membrane and cytosol. It was shown previously that the double mutation L55S/L56S in the flexible region of RhoGDI drastically decreases its affinity for Rac1. In the present work we study the effect of this double mutation on the conformational and dynamic properties of RhoGDI, and describe the weak interaction of the mutant with Rac1 using chemical shift mapping. We show that the helical content of the region 45-56 of RhoGDI is greatly reduced upon mutation, thus increasing the entropic penalty for the immobilization of the helix, and contributing to the loss of binding. In contrast to wild-type RhoGDI, no interaction with Rac1 could be identified for amino-acid residues of the flexible domain of the mutant RhoGDI and only very weak binding was observed for the folded domain of the mutant. The origins of the effect of the L55S/L56S mutation on the binding constant (decreased by at least three orders of magnitude relative to wild-type) are discussed with particular reference to the flexibility of this part of the protein.  相似文献   

15.
Rho GDP dissociation inhibitor 2 (RhoGDI2) was initially identified as a regulator of the Rho family of GTPases. Our recent works suggest that RhoGDI2 promotes tumor growth and malignant progression, as well as enhances chemoresistance in gastric cancer. Here, we delineate the mechanism by which RhoGDI2 promotes gastric cancer cell invasion and chemoresistance using two-dimensional gel electrophoresis (2-DE) on proteins derived from a RhoGDI2-overexpressing SNU-484 human gastric cancer cell line and control cells. Differentially expressed proteins were identified using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF-MS). In total, 47 differential protein spots were identified; 33 were upregulated, and 14 were downregulated by RhoGDI2 overexpression. Upregulation of SAE1, Cathepsin D, Cofilin1, CIAPIN1, and PAK2 proteins was validated by Western blot analysis. Loss-of-function analysis using small interference RNA (siRNA) directed against candidate genes reveals the need for CIAPIN1 and PAK2 in RhoGDI2-induced cancer cell invasion and Cathepsin D and PAK2 in RhoGDI2-mediated chemoresistance in gastric cancer cells. These data extend our understanding of the genes that act downstream of RhoGDI2 during the progression of gastric cancer and the acquisition of chemoresistance.  相似文献   

16.
Rho GDP dissociation inhibitor 2 (RhoGDI2) is a regulator of the Rho family GTPases. Recent work from our laboratory suggests that RhoGDI2 expression potentially enhances resistance to cisplatin as well as promotes tumor growth and malignant progression in gastric cancer. In this study, we demonstrate that phospholipase C-gamma (PLCγ) is required for RhoGDI2-mediated cisplatin resistance and cancer cell invasion in gastric cancer. The levels of phosphorylated PLCγ are markedly enhanced in RhoGDI2-overexpressing SNU-484 cells and, by contrast, repressed in RhoGDI2-depleted MKN-28 cells. Depletion of PLCγ expression or inhibition of its activity not only significantly increases cisplatin-induced apoptosis but also suppresses the invasive ability of RhoGDI2-overexpressing SNU-484 cells. Taken together, our results suggest that PLCγ plays a key role in RhoGDI2-mediated cisplatin resistance and cell invasion in gastric cancer cells.  相似文献   

17.
The acrosome reaction is a fundamental event in the biology of the sperm and is a prerequisite to fertilization of the egg. Members of the Rho family of GTPases and their effectors are present in the cytoplasm and/or plasma membrane overlying the acrosome of porcine sperm. We have implicated the Rho family of GTPases and the Rho-activated kinase, ROCK-1, in mediating the zona-pellucida-induced acrosome reaction. Others have implicated the Rho GTPase in regulating the ionophore-induced acrosome reaction in the sperm of several mammalian species as well as in motility of bovine sperm. In this study, the localization of the Rho GTPases (RhoA, RhoB, Rac1 and Cdc42) as well as the effectors RhoGDI, PI(4)P5K and ROCK-1, was determined in boar, human, rat, ram, bull and elephant sperm. The four GTPases were each present in the sperm head of all species examined. RhoGDI was expressed in the head and tail of sperm from all species except pig, where it was present only in the head. PI(4)P5K was expressed in both head and tail of sperm from all species, but expression was typically weaker in the tail. Finally, ROCK-1 was expressed in the heads and tails of all sperm except that of the boar, where it was present only in the acrosomal region. These observations taken together suggest that the expression of Rho GTPases in sperm has been conserved throughout mammalian evolution, most likely due to the role of these GTPases in regulating acrosomal exocytosis.  相似文献   

18.
To explore the role of the Rho GTPases in lens morphogenesis, we overexpressed bovine Rho GDP dissociation inhibitor (RhoGDIα), which serves as a negative regulator of Rho, Rac and Cdc42 GTPase activity, in a lens-specific manner in transgenic mice. This was achieved using a chimeric promoter of δ-crystallin enhancer and αA-crystallin, which is active at embryonic day 12. Several individual transgenic (Tg) lines were obtained, and exhibited ocular specific phenotype comprised of microphthalmic eyes with lens opacity. The overexpression of bovine RhoGDIα disrupted membrane translocation of Rho, Rac and Cdc42 GTPases in Tg lenses. Transgenic lenses also revealed abnormalities in the migration pattern, elongation and organization of lens fibers. These changes appeared to be associated with impaired organization of the actin cytoskeleton and cell-cell adhesions. At E14.5, the size of the RhoGDIα Tg lenses was larger compared to wild type (WT) and the central lens epithelium and differentiating fibers exhibited an abnormal increase of bromo-deoxy-uridine incorporation. Postnatal Tg eyes, however, were much smaller in size compared to WT eyes, revealing increased apoptosis in the disrupted lens fibers. Taken together, these data demonstrate a critical role for Rho GTPase-dependent signaling pathways in processes underlying morphogenesis, fiber cell migration, elongation and survival in the developing lens.  相似文献   

19.
Inspired by the usefulness of small molecules to study membrane traffic, we used high-throughput synthesis and phenotypic screening to discover secramine, a molecule that inhibits membrane traffic out of the Golgi apparatus by an unknown mechanism. We report here that secramine inhibits activation of the Rho GTPase Cdc42, a protein involved in membrane traffic, by a mechanism dependent upon the guanine dissociation inhibitor RhoGDI. RhoGDI binds Cdc42 and antagonizes its membrane association, nucleotide exchange and effector binding. In vitro, secramine inhibits Cdc42 binding to membranes, GTP and effectors in a RhoGDI-dependent manner. In cells, secramine mimics the effects of dominant-negative Cdc42 expression on protein export from the Golgi and on Golgi polarization in migrating cells. RhoGDI-dependent Cdc42 inhibition by secramine illustrates a new way to inhibit Rho GTPases with small molecules and provides a new means to study Cdc42, RhoGDI and the cellular processes they mediate.  相似文献   

20.
Rho family GTPases are important regulators of the actin cytoskeleton. Activation of these proteins can be promoted by guanine nucleotide exchange factors containing Dbl and Pleckstrin homology domains resulting in membrane insertion of a Rho family member, whereas the inactive GDP-bound form is sequestered primarily in the cytoplasm, bound to the guanosine dissociation inhibitor RhoGDI. Dominant interfering variants of Rac1, but not Cdc42, inhibit beta1 integrin-promoted uptake of Yersinia pseudotuberculosis. Unexpectedly, we found that the Rac1(W56F) guanine nucleotide exchange factors specificity switch mutant blocked invasin-promoted uptake as well as Cdc42-dependent uptake of enteropathogenic Escherichia coli. Fluorescence resonance energy transfer experiments demonstrated that Rac1(W56F) retained the ability to be loaded with GTP, bind a downstream effector, and interact with RhoGDI. Mutational analyses of intragenic suppressors and coexpression studies demonstrated that binding of the Rac1(W56F) mutant to RhoGDI appeared to play a role in the inhibition of uptake. As RhoGDI inhibits RhoA, overactivation of RhoA may account for the uptake interference caused by Rac1(W56F). Consistent with this model, a dominant interfering form of RhoA restored significant uptake in the presence of the Rac1(W56F) mutant but had no effect on another interfering Rac1 form. Furthermore, the cellular GTP-RhoA level was elevated by the presence of Rac1(W56F) mutant protein. These data are consistent with the proposition that Rac1(W56F) blocks invasin-promoted uptake by preventing RhoGDI from inactivating RhoA. We conclude that RhoGDI allows cross-talk between Rho family members that promote potentially antagonistic processes, and disruption of this cross-talk can interfere with invasin-promoted uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号