首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have recently shown that inhibition of HRR (homologous recombination repair) by Chk1 (checkpoint kinase 1) inhibition radiosensitizes pancreatic cancer cells and others have demonstrated that Chk1 inhibition selectively sensitizes p53 mutant tumor cells. Furthermore, PARP1 [poly (ADP-ribose) polymerase-1] inhibitors dramatically radiosensitize cells with DNA double strand break repair defects. Thus, we hypothesized that inhibition of HRR (mediated by Chk1 via AZD7762) and PARP1 [via olaparib (AZD2281)] would selectively sensitize p53 mutant pancreatic cancer cells to radiation. We also used 2 isogenic p53 cell models to assess the role of p53 status in cancer cells and intestinal epithelial cells to assess overall cancer specificity. DNA damage response and repair were assessed by flow cytometry, γH2AX, and an HRR reporter assay. We found that the combination of AZD7762 and olaparib produced significant radiosensitization in p53 mutant pancreatic cancer cells and in all of the isogenic cancer cell lines. The magnitude of radiosensitization by AZD7762 and olaparib was greater in p53 mutant cells compared with p53 wild type cells. Importantly, normal intestinal epithelial cells were not radiosensitized. The combination of AZD7762 and olaparib caused G2 checkpoint abrogation, inhibition of HRR, and persistent DNA damage responses. These findings demonstrate that the combination of Chk1 and PARP1 inhibition selectively radiosensitizes p53 mutant pancreatic cancer cells. Furthermore, these studies suggest that inhibition of HRR by Chk1 inhibitors may be a useful strategy for selectively inducing a BRCA1/2 ‘deficient-like’ phenotype in p53 mutant tumor cells, while sparing normal tissue.  相似文献   

3.
Homologous recombination technologies enable high-throughput cloning and the seamless insertion of any DNA fragment into expression vectors. Additionally, retroviral vectors offer a fast and efficient method for transducing and expressing genes in mammalian cells, including lymphocytes. However, homologous recombination cannot be used to insert DNA fragments into retroviral vectors; retroviral vectors contain two homologous regions, the 5′- and 3′-long terminal repeats, between which homologous recombination occurs preferentially. In this study, we have modified a retroviral vector to enable the cloning of DNA fragments through homologous recombination. To this end, we inserted a bacterial selection marker in a region adjacent to the gene insertion site. We used the modified retroviral vector and homologous recombination to clone T-cell receptors (TCRs) from single Epstein Barr virus-specific human T cells in a high-throughput and comprehensive manner and to efficiently evaluate their function by transducing the TCRs into a murine T-cell line through retroviral infection. In conclusion, the modified retroviral vectors, in combination with the homologous recombination method, are powerful tools for the high-throughput cloning of cDNAs and their efficient functional analysis.  相似文献   

4.
5.
The consequences of Rad51 overexpression for normal and tumor cells   总被引:2,自引:0,他引:2  
Klein HL 《DNA Repair》2008,7(5):686-693
The Rad51 recombinase is an essential factor for homologous recombination and the repair of DNA double strand breaks, binding transiently to both single stranded and double stranded DNA during the recombination reaction. The use of a homologous recombination mechanism to repair DNA damage is controlled at several levels, including the binding of Rad51 to single stranded DNA to form the Rad51 nucleofilament, which is controlled through the action of DNA helicases that can counteract nucleofilament formation. Overexpression of Rad51 in different organisms and cell types has a wide assortment of consequences, ranging from increased homologous recombination and increased resistance to DNA damaging agents to disruption of the cell cycle and apoptotic cell death. Rad51 expression is increased in p53-negative cells, and since p53 is often mutated in tumor cells, there is a tendency for Rad51 to be overexpressed in tumor cells, leading to increased resistance to DNA damage and drugs used in chemotherapies. As cells with increased Rad51 levels are more resistant to DNA damage, there is a selection for tumor cells to have higher Rad51 levels. While increased Rad51 can provide drug resistance, it also leads to increased genomic instability and may contribute to carcinogenesis.  相似文献   

6.
We have recently shown that inhibition of HRR (homologous recombination repair) by Chk1 (checkpoint kinase 1) inhibition radiosensitizes pancreatic cancer cells, and others have demonstrated that Chk1 inhibition selectively sensitizes p53 mutant tumor cells. Furthermore, PARP1 [poly (ADP-ribose) polymerase-1] inhibitors dramatically radiosensitize cells with DNA double-strand break repair defects. Thus, we hypothesized that inhibition of HRR (mediated by Chk1 via AZD7762) and PARP1 [via olaparib (AZD2281)] would selectively sensitize p53 mutant pancreatic cancer cells to radiation. We also used two isogenic p53 cell models to assess the role of p53 status in cancer cells and intestinal epithelial cells to assess overall cancer specificity. DNA damage response and repair were assessed by flow cytometry, γH2AX and an HRR reporter assay. We found that the combination of AZD7762 and olaparib produced significant radiosensitization in p53 mutant pancreatic cancer cells and in all of the isogenic cancer cell lines. The magnitude of radiosensitization by AZD7762 and olaparib was greater in p53 mutant cells compared with p53 wild-type cells. Importantly, normal intestinal epithelial cells were not radiosensitized. The combination of AZD7762 and olaparib caused G2 checkpoint abrogation, inhibition of HRR and persistent DNA damage responses. These findings demonstrate that the combination of Chk1 and PARP1 inhibition selectively radiosensitizes p53 mutant pancreatic cancer cells. Furthermore, these studies suggest that inhibition of HRR by Chk1 inhibitors may be a useful strategy for selectively inducing a BRCA1/2 “deficient-like” phenotype in p53 mutant tumor cells, while sparing normal tissue.Key words: pancreatic cancer, Chk1, PARP1, radiosensitization, p53  相似文献   

7.
Previous studies have shown that exposure of cells to high levels of replicational stress leads to permanent proliferation arrest that does not require p53. We have examined cellular responses to therapeutically relevant low levels of replicational stress that allow limited proliferation. Chronic exposure to low concentrations of hydroxyurea, aphidicolin, or etoposide induced irreversible cell cycle arrest after several population doublings. Inhibition of p53 activity antagonized this arrest and enhanced the long-term proliferation of p53 mutant cells. p21CIP1 was found to be a critical p53 target for arrest induced by hydroxyurea or aphidicolin, but not etoposide, as judged by the ability of p21CIP1 suppression to mimic the effects of p53 disruption. Suppression of Rad51 expression, required for homologous recombination repair, blocked the ability of mutant p53 to antagonize arrest induced by etoposide, but not aphidicolin. Thus, the ability of mutant p53 to prevent arrest induced by replicational stress per se is primarily dependent on preventing p21CIP1 up-regulation. However, when replication stress is associated with DNA strand breaks (such as with etoposide), up-regulation of homologous recombination repair in response to p53 disruption becomes important. Since replicational stress leads to clonal selection of cells with p53 mutations, our results highlight the potential importance of chronic replicational stress in promoting cancer development.  相似文献   

8.
9.
Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2), a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases.  相似文献   

10.
DNA alkylation damage is primarily repaired by the base excision repair (BER) machinery in mammalian cells. In repair of the N-alkylated purine base lesion, for example, alkyl adenine DNA glycosylase (Aag) recognizes and removes the base, and DNA polymerase beta (beta-pol) contributes the gap tailoring and DNA synthesis steps. It is the loss of beta-pol-mediated 5'-deoxyribose phosphate removal that renders mouse fibroblasts alkylation-hypersensitive. Here we report that the hypersensitivity of beta-pol-deficient cells after methyl methanesulfonate-induced alkylation damage is wholly dependent upon glycosylase-mediated initiation of repair, indicating that alkylated base lesions themselves are tolerated in these cells and demonstrate that beta-pol protects against accumulation of toxic BER intermediates. Further, we find that these intermediates are initially tolerated in vivo by a second repair pathway, homologous recombination, inducing an increase in sister chromatid exchange events. If left unresolved, these BER intermediates trigger a rapid block in DNA synthesis and cytotoxicity. Surprisingly, both the cytotoxic and genotoxic signals are independent of both the p53 response and mismatch DNA repair pathways, demonstrating that p53 is not required for a functional BER pathway, that the observed damage response is not part of the p53 response network, and that the BER intermediate-induced cytotoxic and genotoxic effects are distinct from the mechanism engaged in response to mismatch repair signaling. These studies demonstrate that, although base damage is repaired by the BER pathway, incomplete BER intermediates are shuttled into the homologous recombination pathway, suggesting possible coordination between BER and the recombination machinery.  相似文献   

11.
The tumour suppressor p53 prevents tumour formation after DNA damage by halting cell cycle progression to allow DNA repair or by inducing apoptotic cell death. Loss of wild-type p53 function renders cells resistant to DNA damage-induced cell cycle arrest and ultimately leads to genomic instabilities including gene amplifications, translocations and aneuploidy. Some of these chromosomal lesions are based on mechanisms that involve recombinatorial events. Here we report that p53 physically interacts with key factors of homologous recombination: the human RAD51 protein and its prokaryotic homologue RecA. In vitro, wild-type p53 inhibits defined biochemical activities of RecA protein, such as three-way DNA strand exchange and single strand DNA-dependent ATPase activity. In vivo, temperature-sensitive p53 forms complexes with RAD51 only in wild-type but not in mutant conformation. These observations suggest that functional wild-type p53 may select directly the appropriate pathway for DNA repair and control the extent and timing of the production of genetic variation via homologous recombination. Gene amplification an other types of chromosome rearrangements involved in tumour progression might occur not only as result of inappropriate cell proliferation but as a direct consequence of a defect in p53-mediated control of homologous recombination processes due to mutations in the p53 gene.  相似文献   

12.
Activation of poly (ADP-ribose) polymerase -1 (PARP-1) is an early DNA damage response event that, together with phosphorylation of p53, prompts various cellular functions important in the maintenance of the genome stability. In mammalian cells, DSB are repaired by nonhomologous end-joining (NHEJ) and by homologous recombination (HR). To investigate the role of PARP-1 in HR, CHO-K1 wild type and xrs-6 mutant cell line were transfected with pLrec plasmids which carry two nonfunctional copies of the β-galactosidase (lacZ) gene in a tandem array. In result of HR they can give rise to a functional copy of β-galactosidase. To test whether PARP-1 affects the frequency of spontaneous and induced recombination repair, we treated CHO-K1 and xrs6 clones carrying chromosomally integrated pLrec with the PARP-1 inhibitor 3-aminobenzamide (3AB). Our results show that the spontaneous homologous intrachromosomal recombination frequency between the two lacZ copies was almost two orders of magnitude higher in xrs6 cells than in CHO-K1 cells, but that it was not affected by 3AB treatment. Induction of DNA damage by irradiation or electroporation of restriction enzymes did not significantly increase the recombination frequency. Furthermore, in both the cell lines, the effect of PARP-1 inhibition on DSB repair was examined using the neutral comet assay. There was no effect of 3AB treatment on DSB rejoining after 10 Gy irradiation. The results presented support the conclusion that PARP-1 is not directly involved in HR.  相似文献   

13.
Attardi LD 《Mutation research》2005,569(1-2):145-157
Genomic instability is a major force driving human cancer development. A cellular safeguard against such genetic destabilization, which can ensue from defects in telomere maintenance, DNA repair, and checkpoint function, is activation of the p53 tumor suppressor protein, which commonly responds to these DNA damage signals by inducing apoptosis. If, however, p53 becomes inactivated, as is typical of many tumors and pre-cancerous lesions, then cells with compromised genome integrity pathways survive inappropriately, and the accrual of oncogenic lesions can fuel the carcinogenic process. Studies of mouse models have been instrumental in providing support for this idea. Mouse knockouts in genes important for telomere function, DNA damage checkpoint activation and DNA repair - both non-homologous end joining and homologous recombination - are prone to the development of genomic instability. As a consequence of these DNA damage signals, p53 becomes activated in cells of these mutant mice, leading to the induction of apoptosis, sometimes at the expense of organismal viability. This apoptotic response can be rescued through crosses to p53-deficient mice, but has dire consequences: mice predisposed to genomic instability and lacking p53 are susceptible to tumorigenesis. Thus p53-mediated apoptosis provides a crucial tumor suppressive mechanism to eliminate cells succumbing to genomic instability.  相似文献   

14.
The present study addressed whether the combination of metformin and ionizing radiation (IR) would show enhanced antitumor effects in radioresistant p53-deficient colorectal cancer cells, focusing on repair pathways for IR-induced DNA damage. Metformin caused a higher reduction in clonogenic survival as well as greater radiosensitization and inhibition of tumor growth of p53-/- than of p53+/+ colorectal cancer cells and xenografts. Metformin combined with IR induced accumulation of tumor cells in the G2/M phase and delayed the repair of IR-induced DNA damage. In addition, this combination significantly decreased levels of p53-related homologous recombination (HR) repair compared with IR alone, especially in p53-/- colorectal cancer cells and tumors. In conclusion, metformin enhanced radiosensitivity by inducing G2/M arrest and reducing the expression of DNA repair proteins even in radioresistant HCT116 p53-/- colorectal cancer cells and tumors. Our study provides a scientific rationale for the clinical use of metformin as a radiosensitizer in patients with p53-deficient colorectal tumors, which are often resistant to radiotherapy.  相似文献   

15.
Repetitive DNA elements frequently are precursors to chromosomal deletions in prokaryotes and lower eukaryotes. However, little is known about the relationship between repeated sequences and deletion formation in mammalian cells. We have created a novel integrated plasmid-based recombination assay to investigate repeated sequence instability in human cells. In a control cell line, the presence of direct or inverted repeats did not appreciably influence the very low deletion frequencies (2 x 10(-7) to 9 x 10(-7)) in the region containing the repeat. Similar to what has been observed in lower eukaryotes, the majority of deletions resulted from the loss of the largest direct repeat present in the system along with the intervening sequence. Interestingly, in closely related cell lines that possess a mutant p53 gene, deletion frequencies in the control and direct-repeat plasmids were 40 to 300 times higher than in their wild-type counterparts. However, mutant p53 cells did not preferentially utilize the largest available homology in the formation of the deletion. Surprisingly, inverted repeats were approximately 10,000 times more unstable in all mutant p53 cells than in wild-type cells. Finally, several deletion junctions were marked by the addition of novel bases that were homologous to one of the preexisting DNA ends. Contrary to our expectations, only 6% of deletions in all cell lines could be classified as arising from nonhomologous recombination.  相似文献   

16.
17.
产生无标记农杆菌突变体方法的建立及优化   总被引:1,自引:1,他引:0  
农杆菌已经用作许多生物过程研究的模型细菌,为了解析这些生物过程的分子机理,对农杆菌的某些基因进行突变就显得非常重要.以自杀性基因sacB作为反向可选择性标记基因,利用同源重组的原理,建立了一种可对农杆菌基因进行准确插入、删除和位点置换的突变方法,所获突变体不带任何不需要的外源DNA序列.通过详细研究同源序列的长度对农杆菌同源重组效率和突变体产生概率的影响,以及对农杆菌中的同源重组机理的分析,提出了优化该突变体产生方法的方案,即通过设计不等长的上下游同源序列和选择其中一种类型的单交换重组体来筛选二次交换重组体的方法,可以显著地提高理想突变体的产生概率.研究结果对如何提高突变体的产生概率和减少突变体筛选的工作量具重要的参考价值.利用该方法成功地获得了两个基因被同时删除而且不含抗性标记的农杆菌突变株.  相似文献   

18.
To exploit vulnerabilities of tumors, it is urgent to identify associated defects in genome maintenance. One unsolved problem is the mechanism of regulation of DNA double‐strand break repair by REV7 in complex with 53BP1 and RIF1, and its influence on repair pathway choice between homologous recombination and non‐homologous end‐joining. We searched for REV7‐associated factors in human cells and found FAM35A, a previously unstudied protein with an unstructured N‐terminal region and a C‐terminal region harboring three OB‐fold domains similar to single‐stranded DNA‐binding protein RPA, as novel interactor of REV7/RIF1/53BP1. FAM35A re‐localized in damaged cell nuclei, and its knockdown caused sensitivity to DNA‐damaging agents. In a BRCA1‐mutant cell line, however, depletion of FAM35A increased resistance to camptothecin, suggesting that FAM35A participates in processing of DNA ends to allow more efficient DNA repair. We found FAM35A absent in one widely used BRCA1‐mutant cancer cell line (HCC1937) with anomalous resistance to PARP inhibitors. A survey of FAM35A alterations revealed that the gene is altered at the highest frequency in prostate cancers (up to 13%) and significantly less expressed in metastatic cases, revealing promise for FAM35A as a therapeutically relevant cancer marker.  相似文献   

19.
20.
Most of the recombination assays based on the regeneration of selectable marker genes after transient infection or stable integration of DNA into mammalian cells are time consuming. We have used plasmids containing two truncated but overlapping segments of the neomycin resistance gene to rapidly quantitate and characterize the time course of extrachromosomal homologous recombination of DNA transfected into monkey COS cells. By transiently infecting cells with these recombination substrates, extracting Hirt DNA after 1 to 4 days, and transforming recombination-deficient Escherichia coli, we have shown that recombination between direct repeats occurs at frequencies of 1 to 4%. We have also used Southern blot analysis to directly characterize the recombination of this DNA in COS cells and to demonstrate that double-strand breaks in the region of homology increase recombination frequencies 10- to 50-fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号