首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Escherichia coli RecB protein, normally synthesized in low amounts, has been amplified by linkage of the recB gene to the phage lambda leftward promoter in an expression plasmid. From strains harboring this plasmid, RecB protein has been purified to homogeneity by a simple procedure which includes affinity chromatography on a column of RecC protein bound to agarose. The purified RecB protein has DNA-dependent ATPase activity but no exonuclease activity. RecC protein alone has neither ATPase nor exonuclease activity. However, when combined together, the RecB and RecC proteins show the ATP-dependent double-stranded exonuclease properties characteristic of the RecBC DNase.  相似文献   

2.
Analysis of E.coli chromosomes isolated under conditions similar to those used for isolation of eukaryotic chromatin has shown that: 1) The proteins of highly purified E.coli deoxyribonucleoprotein are mainly in addition to RNA polymerase two specific histone-like proteins of apparent molecular weight of 17,000 and 9,000 (proteins 1 and 2, respectively). 2) Proteins 1 and 2 occur in approximately equal molar amounts in the isolated E.coli chromosome, and their relative content corresponds to one molecule of protein 1 plus one molecule of protein 2 per 150-200 base pairs of DNA. 3) There are no long stretches of naked DNA in the purified E.coli deoxyribonucleoprotein suggesting a fairly uniform distribution of the proteins 1 and 2 along DNA. 4) The protein 2 is apparently identical to the DNA-binding protein HU which was isolated previously /1/ from extracts of E.coli cells. 5) Digestion of the isolated E.coli chromosomes with staphylococcal nuclease proceeds through discrete deoxyribonucleoprotein intermediates (in particular, at approximately 120 base pairs) which contain both proteins 1 and 2. However, since no repeating multimer structure was observed so far in nuclease digests of the E.coli chromosome, it seems premature to draw definite conclusions about possible similarities between the nucleosomal organization of the eukaryotic chromatin and the E.coli chromatin structure.Images  相似文献   

3.
The biosynthesis of thiamine in Escherichia coli requires the formation of an intermediate thiazole from tyrosine, 1-deoxy-d-xylulose-5-phosphate (Dxp), and cysteine using at least six structural proteins, ThiFSGH, IscS, and ThiI. We describe for the first time the reconstitution of thiazole synthase activity using cell-free extracts and proteins derived from adenosine-treated E. coli 83-1 cells. The addition of adenosine or adenine to growing cultures of Aerobacter aerogenes, Salmonella typhimurium, and E. coli has been shown previously to relieve the repression by thiamine of its own biosynthesis and increase the expression levels of the thiamine biosynthetic enzymes. By exploiting this effect, we show that the in vitro thiazole synthase activity of cleared lysates or desalted proteins from E. coli 83-1 cells is dependent upon the addition of purified ThiGH-His complex, tyrosine (but not cysteine or 1-deoxy-d-xylulose-5-phosphate), and an as yet unidentified intermediate present in the protein fraction from these cells. The activity is strongly stimulated by the addition of S-adenosylmethionine and NADPH.  相似文献   

4.
Biotin synthase is required for the conversion of dethiobiotin to biotin and requires a number of accessory proteins and small molecule cofactors for activity in vitro. We have previously identified two of these proteins as flavodoxin and ferredoxin (flavodoxin) NADP(+) reductase. We now report the identification of MioC as a third essential protein, together with its cloning, purification, and characterization. Purified MioC has a UV-visible spectrum characteristic of a flavoprotein and contains flavin mononucleotide. The presence of flavin mononucleotide and the primary sequence similarity to flavodoxin suggest that MioC may function as an electron transport protein. The role of MioC in the biotin synthase reaction is discussed, and the structure and function of MioC is compared with that of flavodoxin.  相似文献   

5.
Mouse skin 8-lipoxygenase was expressed in COS-7 cells by transient transfection of its cDNA in pEF-BOS carrying an elongation factor-1alpha promoter. When crude extract of the transfected COS-7 cells was incubated with arachidonic acid, 8-hydroxy-5,9,11, 14-eicosatetraenoic acid was produced as assessed by reverse- and straight-phase high performance liquid chromatographies. The recombinant enzyme also reacted on alpha-linolenic and docosahexaenoic acids at almost the same rate as that with arachidonic acid. Eicosapentaenoic and gamma-linolenic acids were also oxygenated at 43% and 56% reaction rates of arachidonic acid, respectively. In contrast, linoleic acid was a poor substrate for this enzyme. The 8-lipoxygenase reaction with these fatty acids proceeded almost linearly for 40 min. The 8-lipoxygenase was also expressed in an Escherichia coli system using pQE-32 carrying six histidine residues at N-terminal of the enzyme. The expressed enzyme was purified over 380-fold giving a specific activity of approximately 0.2 micromol/45 min per mg protein by nickel-nitrilotriacetate affinity chromatography. The enzymatic properties of the purified 8-lipoxygenase were essentially the same as those of the enzyme expressed in COS-7 cells. When the purified 8-lipoxygenase was incubated with 5-hydroperoxy-6,8,11, 14-eicosatetraenoic acid, two epimers of 6-trans-leukotriene B4, degradation products of unstable leukotriene A4, were observed upon high performance liquid chromatography. Thus, the 8-lipoxygenase catalyzed synthesis of leukotriene A4 from 5-hydroperoxy fatty acid. Reaction rate of the leukotriene A synthase was approximately 7% of arachidonate 8-lipoxygenation. In contrast to the linear time course of 8-lipoxygenase reaction with arachidonic acid, leukotriene A synthase activity leveled off within 10 min, indicating suicide inactivation.  相似文献   

6.
Biotin synthase, a member of the "radical-SAM" family, produces biotin by inserting a sulfur atom between C-6 and C-9 of dethiobiotin. Each of the two saturated carbon atoms is activated through homolytic cleavage of a C-H bond by a deoxyadenosyl radical, issued from the monoelectronic reduction of S-adenosylmethionine (SAM or AdoMet). An important unexplained observation is that the enzyme produces only 1 mol of biotin per enzyme monomer. Some possible reasons for this absence of multiple turnovers are considered here, in connection with the postulated mechanisms. There is a general agreement among several groups that the active form of biotin synthase contains one (4Fe-4S)(2+,1+) center, which mediates the electron transfer to AdoMet, and one (2Fe-2S)(2+) center, which is considered the sulfur source [Ugulava, N. B., Sacanell, C. J., and Jarrett, J. T. (2001) Biochemistry 40, 8352-8358; Tse Sum Bui, B., Benda, R., Schunemann, V., Florentin, D., Trautwein, A. X., and Marquet, A. (2003) Biochemistry 42, 8791-8798; Jameson, G. N. L., Cosper, M. M., Hernandez, H. L., Johnson, M. K., and Huynh, B. H. (2004) Biochemistry 43, 2022-2031]. An alternative hypothesis considers that biotin synthase has a pyridoxal phosphate (PLP)-dependent cysteine desulfurase activity, producing a persulfide which could be the sulfur donor. The absence of turnover was explained by the inhibition due to deoxyadenosine, an end product of the reaction [Ollagnier-de Choudens, S., Mulliez, E., and Fontecave, M. (2002) FEBS Lett. 535, 465-468]. In this work, we show that our purified enzyme has no cysteine desulfurase activity and the required sulfide has to be added as Na(2)S. It cannot be replaced by cysteine, and consistently, PLP has no effect. We observed that deoxyadenosine does not inhibit the reaction either. On the other hand, if the (2Fe-2S)(2+) center is the sulfur source, its depletion after reaction could explain the absence of turnover. We found that after addition of fresh cofactors, including Fe(2+) and S(2)(-), either to the assay when one turn is completed or after purification of the reacted enzyme by different techniques, only a small amount of biotin (0.3-0.4 equiv/monomer) is further produced. This proves that an active enzyme cannot be fully reconstituted after one turn. When 9-mercaptodethiobiotin, which already contains the sulfur atom of biotin, is used as the substrate, the same turnover of one is observed, with similar reaction rates. We postulate that the same intermediate involving the (2Fe-2S) cluster is formed from both substrates, with a rate-determining step following the formation of this intermediate.  相似文献   

7.
Rates of diffusion of uncharged and charged solute molecules through porin channels were determined by using liposomes reconstituted from egg phosphatidylcholine and purified Escherichia coli porins OmpF (protein 1a), OmpC (protein 1b), and PhoE (protein E). All three porin proteins appeared to produce channels of similar size, although the OmpF channel appeared to be 7 to 9% larger than the OmpC and PhoE channels in an equivalent radius. Hydrophobicity of the solute retarded the penetration through all three channels in a similar manner. The presence of one negative charge on the solute resulted in about a threefold reduction in penetration rates through OmpF and OmpC channels, whereas it produced two- to tenfold acceleration of diffusion through the PhoE channel. The addition of the second negatively charged group to the solutes decreased the diffusion rates through OmpF and OmpC channels further, whereas diffusion through the PhoE channel was not affected much. These results suggest that PhoE specializes in the uptake of negatively charged solutes. At the present level of resolution, no sign of true solute specificity was found in OmpF and OmpC channels; peptides, for example, diffused through both of these channels at rates expected from their molecular size, hydrophobicity, and charge. However, the OmpF porin channel allowed influx of more solute molecules per unit time than did the equivalent weight of the OmpC porin when the flux was driven by a concentration gradient of the same size. This apparent difference in "efficiency" became more pronounced with larger solutes, and it is likely to be the consequence of the difference in the sizes of OmpF and OmpC channels.  相似文献   

8.
Rhomboids are a family of serine proteases belonging to intramembrane cleaving proteases, which are supposed to catalyse proteolysis of a substrate protein within the membrane. It remains unclear whether substrates of the rhomboid proteases have a common sequence feature that allows specific cleavage by rhomboids. We showed previously that GlpG, the Escherichia coli rhomboid, can cleave a type I model membrane protein Bla-LY2-MBP having the second transmembrane region of lactose permease (LY2) at the extramembrane region in vivo and in vitro, and that determinants for proteolysis reside within the LY2 sequence. Here we characterized sequence features in LY2 that allow efficient cleavage by GlpG and identified two elements, a hydrophilic region encompassing the cleavage site and helix-destabilizing residues in the downstream hydrophobic region. Importance of the positioning of helix-destabilizers relative to the cleavage site was suggested. These two elements appear to co-operatively promote proteolysis of substrates by GlpG. Finally, random mutagenesis of the cleavage site residues in combination with in vivo screening revealed that GlpG prefers residues with a small side chain and a negative charge at the P1 and P1' sites respectively.  相似文献   

9.
Linde K  Gröbner G  Rilfors L 《FEBS letters》2004,575(1-3):77-80
The activity of phosphatidylserine synthase from Escherichia coli depends significantly on the nature and level of the lipids in the matrix, at which the enzyme is operating. To elucidate the role of anionic lipids in the regulation of PtdSer synthase, its activity was studied in mixed micelles containing phosphatidylglycerol (one charge) or diphosphatidylglycerol (two charges), the two main anionic membrane lipids in E. coli. Membrane association and activity of PtdSer synthase were increased by the two lipids, indicating their essential role in the positive regulation mechanism of the phosphatidylethanolamine level in the E. coli membrane.  相似文献   

10.
Precursors of two secreted periplasmic proteins in Escherichia coli, arabinose-binding protein and maltose-binding protein, were synthesized in vitro on membrane-bound polysomes. Addition of Triton X-100 to the system resulted in processing of the precursors to mature forms.  相似文献   

11.
Each of the twelve enzymes for glycolytic fermentation, eleven from Escherichia coli and one from Saccharomyces cerevisiae, have been over-expressed in E. coli and purified with His-tags. Simple assays have been developed for each enzyme and they have been assembled for fermentation of glucose to ethanol. Phosphorus-31 NMR revealed that this in vitro reaction accumulates fructose 1,6-bisphosphate while recycling the cofactors NAD+ and ATP. This reaction represents a defined ATP-regeneration system that can be tailored to suit in vitro biochemical reactions such as cell-free protein synthesis. The enzyme from S. cerevisiae, pyruvate decarboxylase 1 (Pdc1; EC 4.1.1.1), was identified as one of the major ‘flux controlling’ enzymes for the reaction and was replaced with an evolved version of Pdc1 that has over 20-fold greater activity under glycolysis reaction conditions. This substitution was only beneficial when the ratio of glycolytic enzymes was adjusted to suit greater Pdc1 activity.  相似文献   

12.
Purified minicells of Escherichia coli K-12 containing the plasmid Col-trp(+) or Col-trpA2 could be derepressed for the synthesis of anthranilate synthase, the first enzyme encoded in the trp operon. Non-plasmid-containing, deoxyribonucleic acid-deficient minicells could not be derepressed. Derepressed enzyme synthesis was initiated by l-tryptophan starvation. The kinetics of derepression were studied with minicells containing the Col-trpA2 plasmid. The derepression curves were biphasic with a rapid initial rate of enzyme synthesis followed by a slower rate of synthesis. The presence of l-tryptophan (20 to 50 mug/ml) or chloramphenicol (200 mug/ml) abolished enzyme synthesis. The presence of rifamycin SV (280 mug/ml) partially inhibited enzyme synthesis after at least 3.5 min of exposure. The ratio of minicell-to-cell synthetic capacity was 1:2.4 when compared on the basis of derepressed enzyme activity per unit cell volume. This work demonstrates that plasmid-containing minicells are capable of considerable functional protein and messenger ribonucleic acid synthesis and that the regulation of at least the trp operon is similar in minicells to that observed in cells.  相似文献   

13.
The Escherichia coli DNA polymerase III tau and gamma subunits are single-strand DNA-dependent ATPases (the latter requires the delta and delta' subunits for significant ATPase activity) involved in loading processivity clamp beta. They are homologous to clamp-loading proteins of many organisms from phages to humans. Alignment of 27 prokaryotic tau/gamma homologs and 1 eukaryotic tau/gamma homolog has refined the sequences of nine previously defined identity and functional motifs. Mutational analysis has defined highly conserved residues required for activity in vivo and in vitro. Specifically, mutations introduced into highly conserved residues within three of those motifs, the P loop, the DExx region, and the SRC region, inactivated complementing activity in vivo and clamp loading in vitro and reduced ATPase catalytic efficiency in vitro. Mutation of a highly conserved residue within a fourth motif, VIc, inactivated clamp-loading activity and reduced ATPase activity in vitro, but the mutant gene, on a multicopy plasmid, retained complementing activity in vivo and the mutant gene also supported apparently normal replication and growth as a haploid, chromosomal allele.  相似文献   

14.
15.
Phenylalanine inhibited thiazole biosynthesis in a thiamine-regulatory mutant of Escherichia coli, and the inhibition was overcome by tyrosine.  相似文献   

16.
Effect of Glycine on Thiazole Biosynthesis in Escherichia coli   总被引:1,自引:0,他引:1  
Glycine was found to replace thiamine thiazole for the growth of the thiazoleless mutant of Escherichia coli; it also stimulated the production of thiamine thiazole by washed cell suspensions of the mutant.  相似文献   

17.
Escherichia coli verotoxin (also known as Shiga-like toxin) has been implicated in the aetiology of the hemolytic uremic syndrome and hemorrhagic colitis. The glycolipid binding specificity of verotoxin purified from E. coli H30 and verotoxin cloned from bacteriophage H19B has been examined. Verotoxin from both sources binds specifically to globotriosyl ceramide containing the carbohydrate sequence galactose alpha 1-4galactose beta 1-4glucose-ceramide. Removal of the terminal galactose or substitution with N-acetylgalactosamine in beta 1-3 linkage deletes toxin binding activity. A ceramide trihexoside species, consistent with a globotriosyl ceramide structure was shown to be the major verotoxin-binding glycolipid of cultured vero cells which are routinely used to measure the cytotoxicity of toxin samples.  相似文献   

18.
A deoxyribonucleoprotein (DNP) complex has been isolated from Escherichia coli cells by chromatography on Sephadex G-200. The DNP complex contains phosphoproteins and the content of phosphorus bound to the DNP protein is 3 times higher than in cytoplasmic proteins not bound to DNA. These results have been confirmed by in vivo (32-P-KH2PO4) and in vitro (32-P-ATP) phosphorylation of E. coli DNA-binding proteins isolated by chromatography on DNA--cellulose.  相似文献   

19.
The anaerobically inducible L-serine dehydratase, TdcG, from Escherichia coli was characterized. Based on UV-visible spectroscopy, iron and labile sulfide analyses, the homodimeric enzyme is proposed to have two oxygen-labile [4Fe-4S]2+ clusters. Anaerobically isolated dimeric TdcG had a kcat of 544 s(-1) and an apparent KM for L-serine of 4.8 mM. L-threonine did not act as a substrate for the enzyme. Exposure of the active enzyme to air resulted in disappearance of the broad absorption band at 400-420 nm, indicating a loss of the [4Fe-4S]2+ cluster. A concomitant loss of dehydratase activity was demonstrated, indicating that integrity of the [4Fe-4S]2+ cluster is essential for enzyme activity.  相似文献   

20.
RluD is the pseudouridine synthase responsible for the formation of Psi1911, Psi1915, and Psi1917 in Escherichia coli 23S rRNA. Previous work from our laboratory demonstrated that disruption of the rluD gene and/or loss of the pseudouridine residues for which it is responsible resulted in a severe growth phenotype. In the current work we have examined further the effect of the loss of the RluD protein and its product pseudouridine residues in a deletion strain lacking the rluD gene. This strain exhibits defects in ribosome assembly, biogenesis, and function. Specifically, there is a deficit of 70S ribosomes, an increase in 50S and 30S subunits, and the appearance of new 62S and 39S particles. Analysis of the 39S particles indicates that they are immature precursors of the 50S subunits, whereas the 62S particles are derived from the breakdown of unstable 70S ribosomes. In addition, purified mutant 70S ribosomes were found to be somewhat less efficient than wild type in protein synthesis. The defect in ribosome assembly and resulting growth phenotype of the mutant could be restored by expression of wild-type RluD and synthesis of Psi1911, Psi1915, and Psi1917 residues, but not by catalytically inactive mutant RluD proteins, incapable of pseudouridine formation. The data suggest that the loss of the pseudouridine residues can account for all aspects of the mutant phenotype; however, a possible second function of the RluD synthase is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号