首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism(s) responsible for beta2-adrenergic receptor-mediated skeletal muscle and cardiac hypertrophy remains undefined. This study examined whether calcium influx through L-type calcium channels contributed to the development of cardiac and skeletal muscle (plantaris; gastrocnemius; soleus) hypertrophy during an 8-day treatment with the beta2-adrenergic receptor agonist clenbuterol. Concurrent blockade of L-type calcium channels with nifedipine did not reverse the hypertrophic action of clenbuterol. Moreover, nifedipine treatment alone resulted in both cardiac and soleus muscle hypertrophy (6% and 7%, respectively), and this effect was additive to the clenbuterol-mediated hypertrophy in the heart and soleus muscles. The hypertrophic effects of nifedipine were not associated with increases in total beta-adrenergic receptor density, nor did nifedipine reverse clenbuterol-mediated beta-adrenergic receptor downregulation in either the left ventricle or soleus muscle. Both nifedipine and clenbuterol-induced hypertrophy increased total protein content of the soleus and left ventricle, with no change in protein concentration. In conclusion, our results support the hypothesis that beta2-adrenergic receptor agonist-induced muscle hypertrophy is mediated by mechanisms other than calcium influx through L-type calcium channels.  相似文献   

2.
Administration of beta-adrenergic agonists to domestic species can lead to skeletal muscle hypertrophy, probably by reducing the rate of myofibrillar protein breakdown. Myofibrillar breakdown is associated with the calcium-dependent proteinase system (calpains I,II and calpastatin) whose activity also changes during beta-agonist treatment. A number of growth trials using the agonists cimaterol and clenbuterol with cattle, sheep, chicken and rat are reported which suggest a general mechanism whereby beta-agonists reduce calpain I activity, but increase calpain II and calpastatin activity in skeletal muscle. Parallel changes in specific mRNAs indicate that changes in gene expression or stabilisation of mRNA could in part explain the changes in activity.  相似文献   

3.
The ubiquitin-proteasome pathway is primarily responsible for myofibrillar protein degradation during hindlimb unweighting (HU). Beta-adrenergic agonists such as clenbuterol (CB) induce muscle hypertrophy and attenuate muscle atrophy due to disuse or inactivity. However, the molecular mechanism by which CB exerts these effects remains poorly understood. The aims of this study were to investigate whether CB attenuates HU-induced muscle atrophy through an inhibition of the ubiquitin-proteasome pathway and whether insulin-like growth factor I (IGF-I) mediates this inhibition. Rats were randomized to the following groups: weight-bearing control, 14-day CB-treated, 14-day HU, and CB + HU. HU-induced atrophy was associated with increased proteolysis and upregulation of components of the ubiquitin-proteasome pathway (ubiquitin conjugates, ubiquitin conjugating enzyme E2-14 kDa, and 20S proteasome activity). Upregulation of the ubiquitin proteasome occurred in all muscles tested but was more pronounced in muscles composed primarily of slow-twitch fibers (soleus) than in fast-twitch muscles (plantaris and tibialis anterior). Although CB induced hypertrophy in all muscles, CB attenuated the HU-induced atrophy and reduced ubiquitin conjugates only in the fast plantaris and tibialis anterior and not in the slow soleus muscle. CB did not elevate IGF-I protein content in either of the muscles examined. These results suggest that CB induces hypertrophy and alleviates HU-induced atrophy, particularly in the fast muscles, at least in part through a muscle-specific inhibition of the ubiquitin-proteasome pathway and that these effects are not mediated by the local production of IGF-I in skeletal muscle.  相似文献   

4.
Ankyrin repeat and SOCS box protein 15 (ASB15) is an Asb family member expressed predominantly in skeletal muscle. We have previously reported that ASB15 mRNA abundance decreases after administration of beta-adrenergic receptor agonists. Because beta-adrenergic receptor agonists are known to stimulate muscle hypertrophy, the objective of this study was to determine whether ASB15 regulates cellular processes that contribute to muscle growth. Stable myoblast C2C12 cells expressing full-length ASB15 (ASB15-FL) and ASB15 lacking the ankyrin repeat (ASB15-Ank) or SOCS box (ASB15-SOCS) motifs were evaluated for changes in proliferation, differentiation, protein synthesis, and protein degradation. Expression of ASB15-FL caused a delay in differentiation, followed by an increase in protein synthesis of approximately 34% (P<0.05). A consistent effect of ASB15 overexpression was observed in vivo, where ectopic expression of ASB15 increased skeletal muscle fiber area (P<0.0001) after 9 days. Expression of ASB15-SOCS altered differentiation of myoblasts, resulting in detachment of cells from culture plates. Expression of ASB15-Ank increased protein degradation by 84 h of differentiation (P<0.05), and in vivo ectopic expression of an ASB15 construct lacking both the ankyrin repeat and SOCS box motifs decreased skeletal muscle fiber area (P<0.0001). Together, these results suggest ASB15 participates in the regulation of protein turnover and muscle cell development by stimulating protein synthesis and regulating differentiation of muscle cells. This is the first study to demonstrate a role for an Asb family member in skeletal muscle growth.  相似文献   

5.
Various beta-adrenergic agonists were found to inhibit rates of protein degradation and net protein breakdown in isolated chick extensor digitorum communis (EDC) and atrial muscles. Rates of protein synthesis were not altered by these compounds. The beta-agonist cimaterol inhibited rates of protein degradation in EDC muscles incubated with or without amino acids and insulin. Cimaterol also inhibited the increased proteolysis induced by injury to muscle or by incubating muscles at body temperature (42 degrees C) versus 37 degrees C. Thus, beta-agonists may help promote skeletal muscle accretion in vivo even under conditions of severe negative nitrogen balance by slowing muscle proteolysis.  相似文献   

6.
Competitive control of myosin expression: hypertrophy vs. hyperthyroidism   总被引:1,自引:0,他引:1  
The competition between two opposing influences on the phenotypic expression of skeletal muscle myosin were studied to determine which was the dominant regulator. Experimental hyperthyroidism, which induces fast myosin expression, was produced by subcutaneous implantation of a 40-day constant-time-release triiodothyronine pellet. Compensatory hypertrophy, which induces slow myosin expression, was produced by surgical removal of a synergistic hindlimb muscle. Hyperthyroidism increased the percentage of type II fibers and the fast myosin isoforms in both the plantaris and soleus muscles. Hypertrophy significantly increased the percentage of type I fibers and the slow myosin type in the plantaris and soleus muscles. However, with the simultaneous introduction of hyperthyroidism and hypertrophy, only the hyperthyroid effects were observed. Hyperthyroidism and not physiological demand was found to be the dominant regulator of skeletal muscle myosin expression.  相似文献   

7.
8.
The authors studied the histochemical alterations of human skeletal muscles after tenotomy and after spontaneous rupture of the tendon. Both succinate dehydrogenase (in type I fibers), and myofibrillar ATP-ase (in type 2 fibers) activity was decreased in all injured muscles. In the intact antagonists and contralateral muscles alterations were not found. The creatine phosphokinase and aldolase activity were decreased also in injured muscles. The lactate dehydrogenase activity was various both in affected and in unaffected muscles. Two weeks or more after the injury of the tendon in injured muscles the number of type 1 fibers were decreased and therefore a mathematically significant type 2 fibre predominance occurred. Atrophy involve both type 1 and type 2 fibers, but type 1 fibre atrophy was more pronunced as type 2 fibre atrophy.  相似文献   

9.
10.
We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells.  相似文献   

11.
Type 2 diabetes is preceded by the presence of skeletal muscle insulin resistance, and drugs that increase insulin sensitivity in skeletal muscle prevent the disease. S15511 is an original compound with demonstrated effects on insulin sensitivity in animal models of insulin resistance. However, the mechanisms behind the insulin-sensitizing effect of S15511 are unknown. The aim of our study was to explore whether S15511 improves insulin sensitivity in skeletal muscles. Insulin sensitivity was assessed in skeletal muscles from S15511-treated rats by measuring intracellular insulin-signaling activity and insulin-stimulated glucose transport in isolated muscles. In addition, GLUT4 expression and glycogen levels were assessed after treatment. S15511 treatment was associated with an increase in insulin-stimulated glucose transport in type IIb fibers, while type I fibers were unaffected. The enhanced glucose transport was mirrored by a fiber type-specific increase in GLUT4 expression, while no improvement in insulin-signaling activity was observed. S15511 is a novel insulin sensitizer that is capable of improving glucose homeostasis in nondiabetic rats. The compound enhances skeletal muscle insulin sensitivity and specifically targets type IIb muscle fibers by increasing GLUT4 expression. Together these data show S15511 to be a potentially promising new drug in the treatment and prevention of type 2 diabetes.  相似文献   

12.
The alpha and beta-adrenergic responses of the isolated muscle of sheep rumen were analysed by pharmacodynamic methods after administration of alpha and beta-adrenergic agonists and alpha and beta-adrenergic antagonists. It was found that phenylephrine, and in a lower degree propranolol, stimulated contractions of isolated muscle of sheep rumen while adrenaline, noradrenaline, isoprenaline, phenoxybenzamine and regitine inhibited these contractions. Propranolol abolished the dilating (atonic) effect of catecholamines on the isolated muscles of sheep rumen and previous blockade of beta-adrenergic receptors with propranolol reversed the dilating effects of catecholamines. It is concluded that noradrenaline has an ambiceptor effect (similar to that of adrenaline) on the isolated muscle of the rumen.  相似文献   

13.
Effects of long duration hypergravity on skeletal muscles are much less studied than effects of microgravity. For instance, it was revealed that hypergravity of 2 week duration induces decrease in cross sectional area (CSA) of slow fibers (SF), while their size remains constant, or increases. Exposure to +2G of 14 day duration results in decreased number of type I fibers, and in changed myosin heavy chain (MHC) profiles of rat hindlimb extensor muscle. It is interesting that gravitational unloading also decreases number of type I fibers. However, while effects of microgravity on relationship between the structural and functional characteristics of skeletal muscles are studied in detail, similar characteristics of skeletal muscles under conditions of gravitational overloading are very much understudied. The aim of our work was to follow dynamics of MHC in rat m.soleus after exposure to 19 and to 33 days of +2G acceleration, and to compare content of contractile proteins in muscle fibers, and their contractile properties.  相似文献   

14.
Adrenergic receptor agonists are known to attenuate the proliferative response of human lymphocytes after activation; however, their mechanism of action is unknown. Since expression of interleukin 2 (IL-2) receptors is a prerequisite for proliferation, the effect of beta-adrenergic receptor agonists on lymphocyte IL-2 receptors was studied on both mitogen-stimulated lymphocytes and IL-2-dependent T lymphocyte cell lines. In both cell types the beta-adrenergic receptor agonist isoproterenol blocked the expression of IL-2 receptors, as determined with the IL-2 receptor anti-TAC antibody. To determine the effect of beta-adrenergic agonists on expression of the high affinity IL-2 receptors, [125I]IL-2 binding studies were performed at concentrations selective for high affinity sites. No significant effect of beta-adrenergic agonists on high affinity IL-2 receptor sites could be detected. The data demonstrate that beta-adrenergic receptor agonists down-regulate IL-2 receptors primarily affecting low affinity sites.  相似文献   

15.
UDP-glucose (UDP-Glc) and glycogen levels in skeletal muscle fibers of defined fiber type were measured using microanalytical methods. Infusing rats with insulin increased glycogen in both Type I and Type II fibers. Insulin was without effect on UDP-Glc in Type I fibers but decreased UDP-Glc by 35-40% in Type IIA/D and Type IIB fibers. The reduction in UDP-Glc suggested that UDP-Glc pyrophosphorylase (PPL) activity might limit glycogen synthesis in response to insulin. To explore this possibility, we generated mice overexpressing a UDP-Glc PPL transgene in skeletal muscle. The transgene increased both UDP-Glc PPL activity and levels of UDP-Glc in skeletal muscles by approximately 3-fold. However, overexpression of UDP-Glc PPL was without effect on either the levels of skeletal muscle glycogen or glucose tolerance in vivo. The transgene was also without effect on either control or insulin-stimulated rates of (14)C-glucose incorporation into glycogen in muscles incubated in vitro. The results indicate that UDP-Glc PPL activity is not limiting for glycogen synthesis.  相似文献   

16.
17.
Ca2+-ATPase of the sarcoplasmic reticulum was localized in cryostat sections from three different adult canine skeletal muscles (gracilis, extensor carpi radialis, and superficial digitalis flexor) by immunofluorescence labeling with monoclonal antibodies to the Ca2+-ATPase. Type I (slow) myofibers were strongly labeled for the Ca2+-ATPase with a monoclonal antibody (II D8) to the Ca2+-ATPase of canine cardiac sarcoplasmic reticulum; the type II (fast) myofibers were labeled at the level of the background with monoclonal antibody II D8. By contrast, type II (fast) myofibers were strongly labeled for Ca2+-ATPase of rabbit skeletal sarcoplasmic reticulum. The subcellular distribution of the immunolabeling in type I (slow) myofibers with monoclonal antibody II D8 corresponded to that of the sarcoplasmic reticulum as previously determined by electron microscopy. The structural similarity between the canine cardiac Ca2+-ATPase present in the sarcoplasmic reticulum of the canine slow skeletal muscle fibers was demonstrated by immunoblotting. Monoclonal antibody (II D8) to the cardiac Ca2+-ATPase binds to only one protein band present in the extract from either cardiac or type I (slow) skeletal muscle tissue. By contrast, monoclonal antibody (II H11) to the skeletal type II (fast) Ca2+-ATPase binds only one protein band in the extract from type II (fast) skeletal muscle tissue. These immunopositive proteins coelectrophoresed with the Ca2+-ATPase of the canine cardiac sarcoplasmic reticulum and showed an apparent Mr of 115,000. It is concluded that the Ca2+-ATPase of cardiac and type I (slow) skeletal sarcoplasmic reticulum have at least one epitope in common, which is not present on the Ca2+-ATPase of sarcoplasmic reticulum in type II (fast) skeletal myofibers. It is possible that this site is related to the assumed necessity of the Ca2+-ATPase of the sarcoplasmic reticulum in cardiac and type I (slow) skeletal myofibers to interact with phosphorylated phospholamban and thereby enhance the accumulation of Ca2+ in the lumen of the sarcoplasmic reticulum following beta-adrenergic stimulation.  相似文献   

18.
Summary Three different isoenzymes of human carbonic anhydrase are now well characterized. Carbonic anhydrase I and II have been known for several years and are located in high amounts in red blood cells as well as in many other tissues.Carbonic anhydrase III, a protein showing CO2 hydratase and p-nitrophenylphosphatase activity was isolated from skeletal muscle some years ago. Earlier observations based on enzyme activity and radioimmunoassay studies have suggested that this protein is present in greater quantities in red skeletal muscles than in white ones. We have purified CA III from human soleus muscle and using obtained monospecific polyclonal antibody localized this protein in the same muscle fibers which show acid resistant ATPase activity. Using this protein as a marker for type I muscle fibers, fiber classification into type I and II could now be done also from paraffin embedded sections.This study is supported by the Research Council of Physical Education and Sport, Ministry of Education, Finland  相似文献   

19.
The influence of aging on skeletal myocyte apoptosis is not well understood. In this study we examined apoptosis and apoptotic regulatory factor responses to muscle atrophy induced via limb unloading following loading-induced hypertrophy. Muscle hypertrophy was induced by attaching a weight to one wing of young and aged Japanese quails for 14 days. Removing the weight for 7 or 14 days after the initial 14 days of loading induced muscle atrophy. The contralateral wing served as the intra-animal control. A time-released bromodeoxyuridine (BrdU) pellet was implanted subcutaneously with wing weighting to identify activated satellite cells/muscle precursor cells throughout the experimental period. Bcl-2 mRNA and protein levels decreased after 7 days of unloading, but they were unchanged after 14 days of unloading in young muscles. Bcl-2 protein level but not mRNA level decreased after 7 days of unloading in muscles of aged birds. Seven days of unloading increased the mRNA level of Bax in muscles from both young and aged birds. Fourteen days of unloading increased mRNA and protein levels of Bcl-2, decreased protein levels of Bax, and decreased nuclear apoptosis-inducing factor (AIF) protein level in muscles of aged birds. BrdU-positive nuclei were found in all unloaded muscles from both age groups, but the number of BrdU-positive nuclei relative to the total nuclei decreased after 14 days of unloading compared with 7 days of unloading. The TdT-mediated dUTP nick end labeling (TUNEL) index was higher after 7 days of unloading in both young and aged muscles and after 14 days of unloading in aged muscles. Immunofluorescent staining revealed that almost all of the TUNEL-positive nuclei were also BrdU immunopositive, suggesting that activated satellite cell nuclei (both fused and nonfused) underwent nuclear apoptosis during unloading. There were significant correlations among levels of Bcl-2, Bax, and AIF and TUNEL index. Our data are consistent with the hypothesis that apoptosis regulates, at least in part, unloading-induced muscle atrophy and loss of activated satellite cell nuclei in previously loaded muscles. Moreover, these data suggest that aging influences the apoptotic responses to prolonged unloading following hypertrophy in skeletal myocytes. satellite cells; Bcl-2 protein family  相似文献   

20.
In contrast to studies on skeletal and smooth muscles, the identity of kinases in the heart that are important physiologically for direct phosphorylation of myosin regulatory light chain (RLC) is not known. A Ca(2+)/calmodulin-activated myosin light chain kinase is expressed only in cardiac muscle (cMLCK), similar to the tissue-specific expression of skeletal muscle MLCK and in contrast to the ubiquitous expression of smooth muscle MLCK. We have ablated cMLCK expression in male mice to provide insights into its role in RLC phosphorylation in normally contracting myocardium. The extent of RLC phosphorylation was dependent on the extent of cMLCK expression in both ventricular and atrial muscles. Attenuation of RLC phosphorylation led to ventricular myocyte hypertrophy with histological evidence of necrosis and fibrosis. Echocardiography showed increases in left ventricular mass as well as end-diastolic and end-systolic dimensions. Cardiac performance measured as fractional shortening decreased proportionally with decreased cMLCK expression culminating in heart failure in the setting of no RLC phosphorylation. Hearts from female mice showed similar responses with loss of cMLCK associated with diminished RLC phosphorylation and cardiac hypertrophy. Isoproterenol infusion elicited hypertrophic cardiac responses in wild type mice. In mice lacking cMLCK, the hypertrophic hearts showed no additional increases in size with the isoproterenol treatment, suggesting a lack of RLC phosphorylation blunted the stress response. Thus, cMLCK appears to be the predominant protein kinase that maintains basal RLC phosphorylation that is required for normal physiological cardiac performance in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号