首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human ATP-binding cassette (ABC) transporter superfamily.   总被引:2,自引:0,他引:2  
The transport of specific molecules across lipid membranes is an essential function of all living organisms and a large number of specific transporters have evolved to carry out this function. The largest transporter gene family is the ATP-binding cassette (ABC) transporter superfamily. These proteins translocate a wide variety of substrates including sugars, amino acids, metal ions, peptides, and proteins, and a large number of hydrophobic compounds and metabolites across extra- and intracellular membranes. ABC genes are essential for many processes in the cell, and mutations in these genes cause or contribute to several human genetic disorders including cystic fibrosis, neurological disease, retinal degeneration, cholesterol and bile transport defects, anemia, and drug response. Characterization of eukaryotic genomes has allowed the complete identification of all the ABC genes in the yeast Saccharomyces cerevisiae, Drosophila, and C. elegans genomes. To date, there are 48 characterized human ABC genes. The genes can be divided into seven distinct subfamilies, based on organization of domains and amino acid homology. Many ABC genes play a role in the maintenance of the lipid bilayer and in the transport of fatty acids and sterols within the body. Here, we review the current knowledge of the human ABC genes, their role in inherited disease, and understanding of the topology of these genes within the membrane.  相似文献   

2.
All fungal genomes harbour numerous ABC (ATP-binding cassette) proteins located in various cellular compartments such as the plasma membrane, vacuoles, peroxisomes and mitochondria. Most of them have initially been discovered through their ability to confer resistance to a multitude of drugs, a phenomenon called PDR (pleiotropic drug resistance) or MDR (multidrug resistance). Studying the mechanisms underlying PDR/MDR in yeast is of importance in two ways: first, ABC proteins can confer drug resistance on pathogenic fungi such as Candida spp., Aspergillus spp. or Cryptococcus neoformans; secondly, the well-established genetic, biochemical and cell biological tractability of Saccharomyces cerevisiae makes it an ideal tool to study basic mechanisms of drug transport by ABC proteins. In the past, knowledge from yeast has complemented work on human ABC transporters involved in anticancer drug resistance or genetic diseases. Interestingly, increasing evidence available from yeast and other organisms suggests that ABC proteins play a physiological role in membrane homoeostasis and lipid distribution, although this is being intensely debated in the literature.  相似文献   

3.
Vertebrate evolution has been largely driven by the duplication of genes that allow for the acquisition of new functions. The ATP-binding cassette (ABC) proteins constitute a large and functionally diverse family of membrane transporters. The members of this multigene family are found in all cellular organisms, most often engaged in the translocation of a wide variety of substrates across lipid membranes. Because of the diverse function of these genes, their large size, and the large number of orthologs, ABC genes represent an excellent tool to study gene family evolution. We have identified ABC proteins from the sea squirt (Ciona intestinalis), zebrafish (Danio rerio), and chicken (Gallus gallus) and, using phylogenetic analysis, identified those genes with a one-to-one orthologous relationship to human ABC proteins. All ABC protein subfamilies found in Ciona and zebrafish correspond to the human subfamilies, with the exception of a single ABCH subfamily gene found only in zebrafish. Multiple gene duplication and deletion events were identified in different lineages, indicating an ongoing process of gene evolution. As many ABC genes are involved in human genetic diseases, and important drug transport phenotypes, the understanding of ABC gene evolution is important to the development of animal models and functional studies.  相似文献   

4.
The ATP-binding cassette (ABC) transporter genes represent the largest family of transporters and these genes are abundant in the genome of all vertebrates. Through analysis of the genome sequence databases we have characterized the full complement of ABC genes from several mammals and other vertebrates. Multiple gene duplication and deletion events were identified in ABC genes in different lineages indicating that the process of gene evolution is still ongoing. Gene duplication resulting in either gene birth or gene death plays a major role in the evolution of the vertebrate ABC genes. The understanding of this mechanism is important in the context of human health because these ABC genes are associated with human disease, involving nearly all organ systems of the body. In addition, ABC genes play an important role in the development of drug resistance in cancer cells. Future genetic, functional, and evolutionary studies of ABC transporters will provide important insight into human and animal biology.  相似文献   

5.
ABC细胞膜转运蛋白是一个能转运多种底物的蛋白质家族,其在宿主对异物的防御机制和肿瘤细胞对抗癌药物的耐药性中发挥重要作用。ABC转运蛋白能将已进人细胞的外源性物质从胞内泵出胞外,是造成肿瘤细胞多药耐药的主要原因,其基因表达水平与细胞内药物浓度和耐药程度密切相关。近年来,肿瘤细胞多药耐药性研究炙手可热。我们简要综述ABC细胞膜转运蛋白的特点、分布、表达及其介导的细胞多药耐药方面的研究进展。  相似文献   

6.
The ABC (ATP-binding cassette) protein superfamily is a ubiquitous and functionally versatile family of proteins that is conserved from archaea to humans. In eukaryotes, most of these proteins are implicated in the transport of a variety of molecules across cellular membranes, whereas the remaining ones are involved in biological processes unrelated to transport. The biological functions of several ABC proteins have been described in clinically important parasites and nematode worms and include vesicular trafficking, phospholipid movement, translation and drug resistance. This chapter reviews our current understanding of the role of ABC proteins in drug resistance and treatment failure in apicomplexan, trypanosomatid and amitochondriate parasites of medical relevance as well as in helminths.  相似文献   

7.
The plant PDR family of ABC transporters   总被引:8,自引:0,他引:8  
van den Brûle S  Smart CC 《Planta》2002,216(1):95-106
The plant pleiotropic drug resistance (PDR) family of ATP-binding cassette (ABC) transporters has been implicated in the transport of antifungal agents. In this paper, we provide an analysis of the entire family of PDR genes present in the Arabidopsis thaliana (L.) Heynh. genome. This analysis both resolves discrepancies in published inventories of plant ABC proteins and provides an expression analysis of all the annotated Arabidopsis PDR genes. The results indicate that the Arabidopsis genome contains 15 genes encoding PDR proteins and that these genes show a spectrum of specific expression patterns, both at the organ level and in response to various hormonal, environmental and chemical factors. These data provide a scaffold for the future molecular genetic analysis of this important family of ABC transporters. In addition, we demonstrate the usefulness of such data by using them to identify an Arabidopsis PDR protein that may play a role in the extrusion of the antifungal diterpene sclareol. Electronic Supplementary Material is available if you access this article at http://dx.doi.org/10.1007/s00425-002-0889-z. On that page (frame on the left side), a link takes you directly to the supplementary material.  相似文献   

8.
9.
Schriml LM  Dean M 《Genomics》2000,64(1):24-31
ATP-binding cassette (ABC) genes encode a family of transport proteins known to be involved in a number of human genetic diseases. In this study, we characterized the ABC superfamily in Mus musculus through in silico gene identification and mapping and phylogenetic analysis of mouse and human ABC genes. By querying dbEST with amino acid sequences from the conserved ATP-binding domains, we identified and partially sequenced 18 new mouse ABC genes, bringing the total number of mouse ABC genes to 34. Twelve of the new ABC genes were mapped in the mouse genome to the X chromosome and to 10 of the 19 autosomes. Phylogenetic relationships of mouse and human ABC genes were examined with maximum parsimony and neighbor-joining analyses that demonstrated that mouse and human ABC orthologs are more closely related than are mouse paralogs. The mouse ABC genes could be grouped into the seven previously described human ABC subfamilies. Three mouse ABC genes mapped to regions implicated in cholesterol gallstone susceptibility.  相似文献   

10.
Microsporidia are amitochondriate eukaryotic microbes with fungal affinities and a common status of obligate intracellular parasites. A set of 13 potential genes encoding ATP-binding cassette (ABC) systems was identified in the fully sequenced genome of Encephalitozoon cuniculi. Our analyses of multiple alignments, phylogenetic trees and conserved motifs support a distribution of E. cuniculi ABC systems within only four subfamilies. Six half transporters are homologous to the yeast ATM1 mitochondrial protein, a finding which is in agreement with the hypothesis of a cryptic mitochondrion-derived compartment playing a role in the synthesis and transport of Fe-S clusters. Five half transporters are similar to the human ABCG1 and ABCG2 proteins, involved in regulation of lipid trafficking and anthracyclin resistance respectively. Two proteins with duplicated ABC domains are clearly candidate to non-transport ABC systems: the first is homologous to mammalian RNase L inhibitor and the second to the yeast translation initiation regulator GCN20. An unusual feature of ABC systems in E. cuniculi is the lack of homologs of P-glycoprotein and other ABC transporters which are involved in multiple drug resistance in a large number of eukaryotic microorganisms.  相似文献   

11.
Structural, mechanistic and clinical aspects of MRP1   总被引:23,自引:0,他引:23  
The cDNA encoding ATP-binding cassette (ABC) multidrug resistance protein MRP1 was originally cloned from a drug-selected lung cancer cell line resistant to multiple natural product chemotherapeutic agents. MRP1 is the founder of a branch of the ABC superfamily whose members (from species as diverse as plants and yeast to mammals) share several distinguishing structural features that may contribute to functional and mechanistic similarities among this subgroup of transport proteins. In addition to its role in resistance to natural product drugs, MRP1 (and related proteins) functions as a primary active transporter of structurally diverse organic anions, many of which are formed by the biotransformation of various endo- and xenobiotics by Phase II conjugating enzymes, such as the glutathione S-transferases. MRP1 is involved in a number of glutathione-related cellular processes. Glutathione also appears to play a key role in MRP1-mediated drug resistance. This article reviews the discovery of MRP1 and its relationships with other ABC superfamily members, and summarizes current knowledge of the structure, transport functions and relevance of this protein to in vitro and clinical multidrug resistance.  相似文献   

12.
ATP-binding cassette (ABC) transporters belong to one of the largest protein families that either import or export a wide spectrum of different substrates. Certain members of this superfamily have been implicated in multidrug resistance in various types of cancer as well as in pathogenic microorganisms. The role of ABC proteins in parasitic multidrug resistance becomes increasingly evident. However, studies on ABC transporters in helminths have been limited to MDR1 and MRP orthologues. In the present study, we reported, for the first time, the expression and localization of ABC proteins including orthologues of MDR1, MRP1, BCRP, and BSEP in the giant liver fluke Fasciola gigantica. Furthermore, the functional activities of these ABC transporters were characterized in isolated fluke cells using a fluorescent substrate, rhodamine. The results revealed the inhibition of rhodamine efflux by cyclosporin A, a potent inhibitor of ABC transporters. Interestingly, our data suggested that these proteins might play a role in the export of bile salts, in particular, taurocholate. Although, we did not observe any substantial changes in rhodamine transport in the presence of anthelmintics under experimental conditions, however, our findings altogether shed light on the possible involvement of several members of ABC proteins in the mechanism of drug resistance as well as detoxification process in helminths to survive inside their hosts.  相似文献   

13.
The human breast cancer resistance protein (BCRP, also know as ABCG2, MXR, or ABCP) is one of the more recently discovered ATP-binding cassette (ABC) transporters that confer resistance on cancer cells by mediating multidrug efflux. In the present study, we have obtained functional expression of human BCRP in the Gram-positive bacterium Lactococcus lactis. BCRP expression conferred multidrug resistance on the lactococcal cells, which was based on ATP-dependent drug extrusion. BCRP-mediated ATPase and drug transport activities were inhibited by the BCRP-specific modulator fumitremorgin C. To our knowledge these data represent the first example of the functional expression of a mammalian ABC half-transporter in bacteria. Although members of the ABCG subfamily (such as ABCG1 and ABCG5/8) have been implicated in the transport of sterols, such a role has not yet been established for BCRP. Interestingly, the BCRP-associated ATPase activity in L. lactis was significantly stimulated by (i) sterols including cholesterol and estradiol, (ii) natural steroids such as progesterone and testosterone, and (iii) the anti-estrogen anticancer drug tamoxifen. In addition, BCRP mediated the efflux of [3H]estradiol from lactococcal cells. Our findings suggest that BCRP may play a role in the transport of sterols in human, in addition to its ability to transport multiple drugs and toxins.  相似文献   

14.
ATP-binding cassette (ABC) transporters form a large family of transmembrane proteins that facilitate the transport of specific substrates across membranes in an ATP-dependent manner. Transported substrates include lipids, lipopolysaccharides, amino acids, peptides, proteins, inorganic ions, sugars and xenobiotics. Despite this broad array of substrates, the physiological substrate of many ABC transporters has remained elusive. ABC transporters are divided into seven subfamilies, A-G, based on sequence similarity and domain organization. Here we review the role of members of the ABCG subfamily in human disease and how the identification of disease genes helped to determine physiological substrates for specific ABC transporters. We focus on the recent discovery of mutations in ABCG2 causing hyperuricemia and gout, which has led to the identification of urate as a physiological substrate for ABCG2.  相似文献   

15.
In humans, about 50 ABC proteins play physiologically important roles. Many ABC proteins are involved in lipid outward translocation and lipid homeostasis in the body, and defects in their functions cause various diseases. However, the precise mechanisms of substrate transport remain unclear. In bacteria, several ABC proteins are involved in the transport of lipoproteins and lipopolysaccharides from the inner to outer membrane, and their functioning is a prerequisite for survival. Their functions can be divided into “flip-flop” and “projection”. In this review, human ABC proteins are compared to bacterial proteins to elucidate their mechanisms.  相似文献   

16.
ABC (ATP-binding cassette) proteins actively transport a wide variety of substrates, including peptides, amino acids, sugars, metals, drugs, vitamins and lipids, across extracellular and intracellular membranes. Of the 49 hum an ABC proteins, a significant number are known to mediate the extrusion of lipids from membranes or the flipping of membrane lipids across the bilayer to generate and maintain membrane lipid asymmetry. Typical lipid substrates include phospholipids, sterols, sphingolipids, bile acids and related lipid conjugates. Members of the ABCA subfamily of ABC transporters and other ABC proteins such as ABCB4, ABCG1 and ABCG5/8 implicated in lipid transport play important roles in diverse biological processes such as cell signalling, membrane lipid asymmetry, removal of potentially toxic compounds and metabolites, and apoptosis. The importance of these ABC lipid transporters in cell physiology is evident from the finding that mutations in the genes encoding many of these proteins are responsible for severe inherited diseases. For example, mutations in ABCA1 cause Tangier disease associated with defective efflux of cholesterol and phosphatidylcholine from the plasma membrane to the lipid acceptor protein apoA1 (apolipoprotein AI), mutations in ABCA3 cause neonatal surfactant deficiency associated with a loss in secretion of the lipid pulmonary surfactants from lungs of newborns, mutations in ABCA4 cause Stargardt macular degeneration, a retinal degenerative disease linked to the reduced clearance of retinoid compounds from photoreceptor cells, mutations in ABCA12 cause harlequin and lamellar ichthyosis, skin diseases associated with defective lipid trafficking in keratinocytes, and mutations in ABCB4 and ABCG5/ABCG8 are responsible for progressive intrafamilial hepatic disease and sitosterolaemia associated with defective phospholipid and sterol transport respectively. This chapter highlights the involvement of various mammalian ABC transporters in lipid transport in the context of their role in cell signalling, cellular homoeostasis, apoptosis and inherited disorders.  相似文献   

17.
Members of the ATP‐binding cassette F (ABC‐F) proteins confer resistance to several classes of clinically important antibiotics through ribosome protection. Recent structures of two ABC‐F proteins, Pseudomonas aeruginosa MsrE and Bacillus subtilis VmlR bound to ribosome have shed light onto the ribosome protection mechanism whereby drug resistance is mediated by the antibiotic resistance domain (ARD) connecting the two ATP binding domains. ARD of the E site bound MsrE and VmlR extends toward the drug binding region within the peptidyl transferase center (PTC) and leads to conformational changes in the P site tRNA acceptor stem, the PTC, and the drug binding site causing the release of corresponding drugs. The structural similarities and differences of the MsrE and VmlR structures likely highlight an universal ribosome protection mechanism employed by antibiotic resistance (ARE) ABC‐F proteins. The variable ARD domains enable this family of proteins to adapt the protection mechanism for several classes of ribosome‐targeting drugs. ARE ABC‐F genes have been found in numerous pathogen genomes and multi‐drug resistance conferring plasmids. Collectively they mediate resistance to a broader range of antimicrobial agents than any other group of resistance proteins and play a major role in clinically significant drug resistance in pathogenic bacteria. Here, we review the recent structural and biochemical findings on these emerging resistance proteins, offering an update of the molecular basis and implications for overcoming ABC‐F conferred drug resistance.  相似文献   

18.
About a 100 years ago, the Drosophila white mutant marked the birth of Drosophila genetics. The white gene turned out to encode the first well studied ABC transporter in arthropods. The ABC gene family is now recognized as one of the largest transporter families in all kingdoms of life. The majority of ABC proteins function as primary-active transporters that bind and hydrolyze ATP while transporting a large diversity of substrates across lipid membranes. Although extremely well studied in vertebrates for their role in drug resistance, less is known about the role of this family in the transport of endogenous and exogenous substances in arthropods. The ABC families of five insect species, a crustacean and a chelicerate have been annotated in some detail. We conducted a thorough phylogenetic analysis of the seven arthropod and human ABC protein subfamilies, to infer orthologous relationships that might suggest conserved function. Most orthologous relationships were found in the ABCB half transporter, ABCD, ABCE and ABCF subfamilies, but specific expansions within species and lineages are frequently observed and discussed. We next surveyed the role of ABC transporters in the transport of xenobiotics/plant allelochemicals and their involvement in insecticide resistance. The involvement of ABC transporters in xenobiotic resistance in arthropods is historically not well documented, but an increasing number of studies using unbiased differential gene expression analysis now points to their importance. We give an overview of methods that can be used to link ABC transporters to resistance. ABC proteins have also recently been implicated in the mode of action and resistance to Bt toxins in Lepidoptera. Given the enormous interest in Bt toxicology in transgenic crops, such findings will provide an impetus to further reveal the role of ABC transporters in arthropods.  相似文献   

19.
Some ABC transporters play a significant role in human health and illness because they confer multidrug resistance (MDR) through their overexpression. Compounds that inhibit the drug efflux mechanism can improve efficacy or reverse resistance. Of the eight described ABC transporter subfamilies, those proteins conferring MDR in humans are in subfamilies A, B, C, and G. In nematodes, transporters in subfamilies B and C are suggested to confer resistance to ivermectin. The Brugia malayi ABC transporter superfamily was examined to assess their potential to influence sensitivity to moxidectin. There was an increase in expression of ABC transporters in subfamilies A, B, C, and G following treatment. Co-administration of moxidectin with inhibitors of ABC transporter function did not enhance sensitivity to moxidectin in males; however, sensitivity was significantly enhanced in females and microfilariae. The work suggests that ABC transporters influence sensitivity to moxidectin and have a potential role in drug resistance.  相似文献   

20.
ATP binding cassette (ABC) transporters, which are found in all species, are known mainly for their ability to confer drug resistance. They have been thoroughly studied in mammals, where they became the center of interest for clinical reasons related to the resistance of tumor cells to chemotherapy treatment. Less is known about plant members of the ABC family, however, growing number of reports on their role in different physiological processes attract attention. The vacuolar ABC transporters in plants characterized to date are involved in the intracellular sequestration of cytotoxins (e.g. herbicides), as well as the products of endogenous metabolism like chlorophyll catabolites. Others localized within plasma membrane are active in the transport of secondary metabolites or phytohormones. Finally certain transporters are present in cell organelles and play a role in such processes as P oxidation. Here, we briefly introduce these proteins, and describe structural characteristic and physiological aspect of their activity in a plant cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号