首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The process of clathrin-coated vesicle (CCV) formation/disassembly involves numerous proteins that act cooperatively. Phosphorylation is an important regulatory mechanism governing protein interactions in CCVs, and many of the core and accessory proteins of the CCV machinery are reversibly phosphorylated in vivo. CK2 is highly enriched in CCVs and is capable of phosphorylating a number of peripheral membrane proteins involved in the process of clathrin-mediated endocytosis. At least some of these phosphorylation events have been shown to be inhibitory for CCV assembly, and CK2 has been shown to be inactive when associated with intact CCVs. Here we show that CCV membranes inhibit CK2 activity even after incubation in trypsin, indicating that a component of the lipid bilayer may be the inhibitory factor. Consistent with this, we showed that liposomes containing phosphatidylinositol phosphates inhibit the activity of CK2 and that CK2 binds to those liposomes. Notably, liposomes containing phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)), a component of CCVs, bind CK2 and inhibit its activity. Furthermore, we showed that the binding of CK2 to PtdIns(4,5)P(2)-containing liposomes is via the active site of CK2, thus providing a molecular explanation for the inhibition of CK2 activity when it is bound to PtdIns(4,5)P(2)-containing liposomes. Thus CK2 is inactive in CCVs because of the fact that it is bound to the CCV membrane via an interaction between PtdIns(4,5)P(2) in the CCV membrane and the active site in CK2.  相似文献   

2.
A prominent regulatory property of plant shaker-type K+ channels is the 'rundown' that causes channel closure upon membrane excision from the cell, implicating intracellular factor(s) in maintaining channel activity. One such factor has been identified as hydrolysable ATP-Mg although the mechanism for ATP function remains unknown. Here we report identification of phosphatidylinositol (PI) phosphates (PIPs) as essential regulators for the voltage-dependent and -independent activation of plant shaker-type channels such as SKOR, an outward rectifying K+ channel. Inhibition of PI kinase activity abolished the function of ATP-Mg in restoration of rundown channel activity, demonstrating that PIPs production by PI kinases and ATP-Mg underlies ATP-induced activation of the rundown channel. We also identified aluminum block as a common feature of the plant shaker-type channels and provided evidence that aluminum block of these channels may result from Al interaction with PIPs.  相似文献   

3.
4.
Song X  Xu W  Zhang A  Huang G  Liang X  Virbasius JV  Czech MP  Zhou GW 《Biochemistry》2001,40(30):8940-8944
The recruitment of specific cytosolic proteins to intracellular membranes through binding phosphorylated derivatives of phosphatidylinositol (PtdIns) controls such processes as endocytosis, regulated exocytosis, cytoskeletal organization, and cell signaling. Protein modules such as FVYE domains and PH domains that bind specifically to PtdIns 3-phosphate (PtdIns-3-P) and polyphosphoinositides, respectively, can direct such membrane targeting. Here we show that two representative Phox homology (PX) domains selectively bind to specific phosphatidylinositol phosphates. The PX domain of Vam7p selectively binds PtdIns-3-P, while the PX domain of the CPK PI-3 kinase selectively binds PtdIns-4,5-P(2). In contrast, the PX domain of Vps5p displays no binding to any PtdInsPs that were tested. In addition, the double mutant (Y42A/L48Q) of the PX domain of Vam7p, reported to cause vacuolar trafficking defects in yeast, has a dramatically decreased level of binding to PtdIns-3-P. These data reveal that the membrane targeting function of the Vam7p PX domain is based on its ability to associate with PtdIns-3-P, analogous to the function of FYVE domains.  相似文献   

5.
Ras proteins transduce extracellular signals to intracellular signaling pathways by binding to and promoting the activation of at least three classes of downstream signaling molecules: Raf kinases, phosphoinositide-3-kinase (PI3-K) and Ral guanine nucleotide exchange factors (Ral-GEFs). Previous work has demonstrated that epidermal growth factor (EGF) activates Ral-GEFs, at least in part, by a Ras-mediated redistribution of the GEFs to their target, Ral-GTPases, in the plasma membrane. Here we show that Ral-GEF stimulation by EGF involves an additional mechanism, PI3-K-dependent kinase 1 (PDK1)-induced enhancement of Ral-GEF catalytic activity. Remarkably, this PDK1 function is not dependent upon its kinase activity. Instead, the non-catalytic N-terminus of PDK1 mediates the formation of an EGF-induced complex with the N-terminus of the Ral-GEF, Ral-GDS, thereby relieving its auto-inhibitory effect on the catalytic domain of Ral-GDS. These results elucidate a novel function for PDK1 and demonstrate that two Ras effector pathways cooperate to promote Ral-GTPase activation.  相似文献   

6.
The CFTR chloride channel is tightly regulated by phosphorylation at multiple serine residues. Recently it has been proposed that its activity is also regulated by tyrosine kinases, however the tyrosine phosphorylation sites remain to be identified. In this study we examined 2 candidate tyrosine residues near the boundary between the first nucleotide binding domain and the R domain, a region which is important for channel function but devoid of PKA consensus sequences. Mutating tyrosines at positions 625 and 627 dramatically reduced responses to Src or Pyk2 without altering the activation by PKA, suggesting they may contribute to CFTR regulation.  相似文献   

7.
8.
PKA-mediated phosphorylation of the regulatory (R) domain plays a major role in the activation of the human cystic fibrosis transmembrane conductance regulator (hCFTR). In contrast, the effect of PKC-mediated phosphorylation is controversial, smaller than that of PKA, and dependent on the cell type. In the present study, we expressed Xenopus CFTR (XCFTR) and hCFTR in Xenopus oocytes and examined their responses (i.e., macroscopic membrane conductance) to maximal stimulation by PKC and PKA agonists. With XCFTR, the average response to PKC was approximately sixfold that of PKA stimulation. In contrast, with hCFTR, the response to PKC was 90% of the response to PKA stimulation. The reason for these differences was the small response of XCFTR to PKA stimulation. Using the substituted cysteine accessibility method, we found no evidence for insertion of functional CFTR channels in the plasma membrane in response to PKC stimulation. The increase in macroscopic conductance in response to PKC stimulation of XCFTR was due to an approximately fivefold increase in single-channel open probability, with a minor (30%) increase in single-channel conductance. The responses of XCFTR to PKC stimulation and of hCFTR to PKA stimulation were mediated by similar increases in Po. In both instances, there were no changes in the number of channels in the membrane. We speculate that in animals other than humans, PKC stimulation may be the dominant mechanism for activation of CFTR. chloride channel; channel regulation; cystic fibrosis transmembrane conductance regulator gating; cystic fibrosis; phosphorylation; protein kinase A  相似文献   

9.
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor suppressor that is lost in many human tumors and encodes a phosphatidylinositol phosphate phosphatase specific for the 3-position of the inositol ring. Here we report a novel mechanism of PTEN regulation. Binding of di-C8-phosphatidylinositol 4,5-P2 (PI(4,5)P2) to PTEN enhances phosphatase activity for monodispersed substrates, PI(3,4,5)P3 and PI(3,4)P2. PI(5)P also is an activator, but PI(4)P, PI(3,4)P2, and PI(3,5)P2 do not activate PTEN. Activation by exogenous PI(4,5)P2 is more apparent with PI(3,4)P2 as a substrate than with PI(3,4,5)P3, probably because hydrolysis of PI(3,4)P2 yields PI(4)P, which is not an activator. In contrast, hydrolysis of PI(3,4,5)P3 yields a potent activator, PI(4,5)P2, creating a positive feedback loop. In addition, neither di-C4-PI(4,5)P2 nor inositol trisphosphate-activated PTEN. Hence, the interaction between PI(4,5)P2 and PTEN requires specific, ionic interactions with the phosphate groups on the inositol ring as well as hydrophobic interactions with the fatty acid chains, likely mimicking the physiological interactions that PTEN has with the polar surface head groups and the hydrophobic core of phospholipid membranes. Mutations of the apparent PI(4,5)P2-binding motif in the PTEN N terminus severely reduced PTEN activity. In contrast, mutation of the C2 phospholipid-binding domain had little effect on PTEN activation. These results suggest a model in which a PI(4,5)P2 monomer binds to PTEN, initiates an allosteric conformational change and, thereby, activates PTEN independent of membrane binding.  相似文献   

10.
In epithelia, Cl- channels play a prominent role in fluid and electrolyte transport. Of particular importance is the cAMP-dependent cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR) with mutations of the CFTR encoding gene causing cystic fibrosis. The bulk transepithelial transport of Cl- ions and electrolytes needs however to be coupled to an increase in K+ conductance in order to recycle K+ and maintain an electrical driving force for anion exit across the apical membrane. In several epithelia, this K+ efflux is ensured by K+ channels, including KCa3.1, which is expressed at both the apical and basolateral membranes. We show here for the first time that CFTR and KCa3.1 can physically interact. We first performed a two-hybrid screen to identify which KCa3.1 cytosolic domains might mediate an interaction with CFTR. Our results showed that both the N-terminal fragment M1-M40 of KCa3.1 and part of the KCa3.1 calmodulin binding domain (residues L345-A400) interact with the NBD2 segment (G1237-Y1420) and C- region of CFTR (residues T1387-L1480), respectively. An association of CFTR and F508del-CFTR with KCa3.1 was further confirmed in co-immunoprecipitation experiments demonstrating the formation of immunoprecipitable CFTR/KCa3.1 complexes in CFBE cells. Co-expression of KCa3.1 and CFTR in HEK cells did not impact CFTR expression at the cell surface, and KCa3.1 trafficking appeared independent of CFTR stimulation. Finally, evidence is presented through cross-correlation spectroscopy measurements that KCa3.1 and CFTR colocalize at the plasma membrane and that KCa3.1 channels tend to aggregate consequent to an enhanced interaction with CFTR channels at the plasma membrane following an increase in intracellular Ca2+ concentration. Altogether, these results suggest 1) that the physical interaction KCa3.1/CFTR can occur early during the biogenesis of both proteins and 2) that KCa3.1 and CFTR form a dynamic complex, the formation of which depends on internal Ca2+.  相似文献   

11.
Protein kinase C(PKC) is a Ca2+- and phospholipid-dependent protein kinase which can be activated by diacylglycerol, a product of polyphosphoinositide hydrolysis. In this report, we show that the polyphosphoinositides L-alpha-phosphatidylinositol 4-monophosphate (PI 4P) and L-alpha-phosphatidylinositol 4,5-diphosphate (PI 4.5DP) can serve as phospholipid cofactors of isolated rat brain PKC. The order of potency of the phosphoinositides in the activation of PKC, PI greater than PI 4P greater than PI 4,5DP, shows a negative correlation with the degree of acidity of the phospholipid head group, whether 1 mM Ca2+ or 200 nM TPA is present in the reaction assay mixture. Although the polyphosphoinositides are by themselves weaker activators of PKC than PI, small amounts of PI 4,5DP cause a two-fold enhancement of PKC in the presence of Ca2+ and PI. While the endogenous phospholipid cofactors of PKC remain to be identified, these results suggest that the small amounts of polyphosphoinositides which are present in cell membranes may play a direct role in the activation of PKC in vivo, by serving as phospholipid cofactors of the enzyme.  相似文献   

12.
In order to examine the role of phosphatidylinositol bisphosphate (PIP2) hydrolysis in B cell activation, we studied the effect of various classes of protein kinase C (PKC) activators on anti-Ig-mediated B cell stimulation. Anti-Ig-stimulated PIP2 hydrolysis, elevations in [Ca2+]i, and induction of DNA synthesis were inhibited by PMA (a phorbol ester) as previously reported. In contrast, indolactam (an alkaloid PKC activator) inhibited PIP2 hydrolysis and elevations in [Ca2+]i, but stimulated rather than inhibited cellular proliferation. In order to examine whether the binding avidity of the PKC activators to PKC played a role in determining their activity to stimulate or inhibit B cell activation, we studied two other PKC activators, bryostatin and mezerein. Again, both inhibited anti-Ig mediated PIP2 hydrolysis and elevations in [Ca2+]i, whereas only the former inhibited induction of DNA synthesis. These data suggest that a) high levels of PIP2 hydrolysis and elevations in [Ca2+]i are not essential for anti-Ig-mediated induction of B cell DNA synthesis and b) activation of PKC may induce both stimulatory and inhibitory pathways of B cell activation, and whether stimulation or inhibition of cell activation is observed may depend on the combined intensity of these two signals.  相似文献   

13.
The genetic disease cystic fibrosis is caused by mutation of the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). Controversial studies reported regulation of the epithelial sodium channel (ENaC) by CFTR. We found that uptake of 22Na+ through ENaC is modulated by activation of CFTR in oocytes, coexpressing CFTR and ENaC, depending on extracellular chloride concentration. Furthermore we found that the effect of CFTR activation could be mimicked by other chloride channels. Voltage– and patch–clamp measurements, however, showed neither stimulation nor inhibition of ENaC-mediated conductance by activated CFTR. We conclude that the observed modulation of 22Na+ uptake by activated CFTR is due to the effect of CFTR-mediated chloride conductance on the membrane potential. These findings argue against the notion of a specific influence of CFTR on ENaC and emphasize the chloride channel function of CFTR.  相似文献   

14.
Niisato N  Nishio K  Marunaka Y 《Life sciences》2002,71(10):1199-1207
We studied effects of tyrphostin A23 (an inhibitor of protein tyrosine kinase; PTK) and tyrphostin A63 (an inactive analog of tyrphostin A23) on forskolin-activated cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels and Cl(-) secretion in renal epithelial A6 cells. Tyrphostin A23 and A63 had no effects on the basal CFTR Cl(-) channel and Cl(-) secretion. However, under the forskolin-stimulated condition, tyrphostin A23 and A63 stimulated Cl(-) secretion by activating CFTR Cl(-) channels. These observations suggest that: 1) tyrphostin A23 and A63 stimulate the cAMP-activated CFTR Cl(-) channel via a PTK-independent, structure-dependent mechanism, and 2) tyrphostin A23 and A63 do not stimulate the basal CFTR Cl(-) channel. These lead us to an idea that: 1) cAMP might cause a conformational change of CFTR Cl(-) channel which is accessible by tyrphostins, and 2) tyrphostins would stimulate translocation of the cAMP-modified channel to the apical membrane by binding to the channel.  相似文献   

15.
16.
M H Lee  R M Bell 《Biochemistry》1991,30(4):1041-1049
The mechanism of protein kinase C (PKC) activation by phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-monophosphate (PIP), and phosphatidylinositol (PI) was investigated by using Triton X-100 mixed micellar methods. The activation of PKC by PIP2, for which maximal activity was 60% of that elicited by sn-1,2-diacyglycerol (DAG), was similar to activation by DAG in several respects: (1) activation by PIP2 and DAG required phosphatidylserine (PS) as a phospholipid cofactor, (2) PIP2 and DAG reduced the concentration of Ca2+ and PS required for activation, (3) the concentration dependences of activation by PIP2 and DAG depended on the concentration of PS, and (4) PIP2 and DAG complemented one another to achieve maximal activation. On the other hand, PIP2 activation of PKC differed from activation by DAG in several respects. With increasing concentrations of PIP2, (1) the optimal concentration of PS required was constant at 12 mol%, (2) the maximal activity at 12 mol% PS increased, and (3) the cooperativity for PS decreased. PIP2 did not inhibit [3H]phorbol 12,13-dibutyrate (PDBu) binding of PKC at saturating levels of PS; however, at subsaturating levels of PS, PIP2 enhanced [3H]PDBu binding by acting as a phospholipid cofactor. PIP did not function as an activator but served as a phospholipid cofactor in the presence of PS. While PIP2, PIP, and PI did not support DAG-dependent PKC activation as phospholipid cofactors, their presence reduced the amount of PS required for maximal activation to as low as 2 mol% from 8 mol%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
A soybean phospholipid mixture produced a concentration-dependent enhancement of beta subunit autophosphorylation of the detergent-soluble, purified human placental insulin receptor. Although phosphatidylcholine, phosphatidylethanolamine, or phosphatidylserine also increased insulin receptor autophosphorylation, only phosphatidylinositol (PtdIns) stimulated to a similar extent as the phospholipid mixture. The effect of PtdIns was biphasic, stimulating at low concentrations (75 microM), but having no stimulatory effect at high concentrations (1.0 mM). Phospholipids also stimulated the exogenous protein kinase activity of the insulin receptor toward histone H2B. Phosphorylation of PtdIns occurred with these purified insulin receptor preparations, but this activity was insulin-independent, and the turnover number for PtdIns phosphorylation in the presence of soybean phospholipid was 1/220th as small as the turnover number for the autophosphorylating activity. These results suggest that although PtdIns can modulate the activity of the insulin receptor kinase, PtdIns phosphorylation itself is not directly involved in this regulation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号