首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The gene for glutamate dehydrogenase (GDH) from Pyrococcus furiosus has been cloned, sequenced and expressed in Escherichia coli. Significant GDH activity could be detected in this host, allowing the further structure-function analysis of this hyperthermostable hexameric enzyme. The deduced primary sequence of the P. furiosus GDH was homologous to various bacterial, archaeal and eukaryal GDHs. Detailed comparative analysis of the primary sequences of these GDHs suggest that a decrease in Gly residues can be a general stabilizing feature of proteins functional under extreme conditions such as high temperatures or high salt concentrations whereas an increase in He residues and a decrease in Cys residues is typical for hyperthermostable enzymes.  相似文献   

2.
Two cDNA clones (lambda GDHh1 and lambda GDHn61) for glutamate dehydrogenase (GDH) were isolated from a human liver cDNA library in lambda gt11. The clone, lambda GDHh1, was isolated from the library using a synthetic 45mer oligodeoxy-ribonucleotide, the sequence of which was derived from the known amino acid sequence near the NH2-terminus of human liver GDH. Subsequently, lambda GDHn61 was isolated from the same library using lambda GDHh1 as a probe. The inserts of both clones contained an overlapping cDNA sequence for human liver GDH, consisting of a 5'-untranslated region of 70 bp, an open reading frame of 1677 bp, a 3'-untranslated region of 1262 bp and a 15 base poly(A) tract. The predicted amino acid sequence revealed that the human liver GDH precursor consisted of a total of 558 amino acid residues including the NH2-terminal presequence of 53 amino acids. The sequence deduced for the mature enzyme showed 94% homology to the previously reported amino acid sequence of human liver GDH.  相似文献   

3.
On the cross-roads of main carbon and nitrogen metabolic pathways, glutamate dehydrogenase (GDH, E.C. 1.4.1.2) carries out the reaction of reductive amination of 2-oxoglutarate to glutamate (the anabolic activity; NAD(P)H–GDH), and the reverse reaction of oxidative deamination of glutamic acid (the catabolic activity; NAD(P)+–GDH). To date, there have been no reports on identification of GDH genes in cereals. Here, we report cloning and biochemical characterization of the GDH from germinating triticale seeds, a common Polish cereal. A single TsGDH1 gene is 1,620 bp long, while its 1,236 bp long open reading frame encodes a protein of 411 amino acids of high homology with the published GDH protein sequences from other plants. Phylogenetic analyses locate the TsGDH1 among other monocotyledonous proteins and among the sequences of the β-type subunit of plant GDHs. Changes in TsGDH1 expression and the dynamics of enzyme activity in germinating seeds confirm the existence of one TsGDH isoform with varying expression and activity patterns, depending on the tissue localization and stage of germination. The four-step purification method (including the anionite chromatography using HPLC) resulted in a protein preparation with a high-specific activity and purification factor of approx. 230. The purified enzyme exhibited an absolute specificity towards 2-oxoglutarate (NAD(P)H–GDH), or towards l-glutamate in the reverse reaction (NAD(P)+–GDH), while its low K m constants towards all substrates and co-enzymes may suggest its aminating activity during germination, or, alternatively, its capability to adjust the direction of the catalyzed reaction according to the metabolic necessity.  相似文献   

4.
The gdhA gene encoding glutamate dehydrogenase (GDH) from the hyperthermophilic archaeon Pyrococcus sp. KOD1 was cloned and sequenced. Phylogenetic analysis was performed on an alignment of 25?GDH sequences including KOD1-GDH, and two protein families were distinguished, as previously reported. KOD1-GDH was classified as new member of the hexameric GDH Family II. The gdhA gene was expressed in Escherichia coli, and recombinant KOD1-GDH was purified. Its enzymatic characteristics were compared with those of the native KOD1-GDH. Both enzymes had a molecular mass of 47 300?Da and were shown to be functional in a hexameric form (284?kDa). The N-terminal amino acid sequences of native KOD1-GDH and the recombinant GDH were VEIDPFEMAV and MVEIDPFEMA, respectively, indicating that native KOD1-GDH does not retain the initial methionine at the N-terminus. The recombinant GDH displayed enzyme characteristics similar to those of the native GDH, except for a lower level of thermostability, with a half-life of 2?h at 100°?C, compared to 4?h for the native enzyme purified from KOD1. Kinetic studies suggested that the reaction is biased towards glutamate production. KOD1-GDH utilized both coenzymes NADH and NADPH, as do most eukaryal GDHs.  相似文献   

5.
Ahn JY  Choi S  Cho SW 《Biochimie》1999,81(12):1123-1129
Incubation of two types of glutamate dehydrogenase (GDH) isoproteins from bovine brain with o-phthalaldehyde resulted in a time-dependent loss of enzyme activity. The inactivation was partially prevented by preincubation of the GDH isoproteins with 2-oxoglutarate or NADH. Spectrophotometric studies indicated that the inactivation of GDH isoproteins with o-phthalaldehyde resulted in isoindole derivatives characterized by typical fluorescence emission spectra with a stoichiometry of one isoindole derivative per molecule of enzyme subunit. There were no differences between the two GDH isoproteins in sensitivities to inactivation by o-phthalaldehyde indicating that the microenvironmental structures of the GDH isoproteins are very similar to each other. Tryptic peptides of the isoproteins, modified with and without protection, identified a selective modification of one lysine as in the region containing the sequence L-Q-H-G-S-I-L-G-F-P-X-A-K for both GDH isoproteins. The symbol X indicates a position for which no phenylthiohydantoin-amino acid could be assigned. The missing residue, however, can be designated as an o-phthalaldehyde-labeled lysine since the sequences including the lysine residue in question have a complete identity with those of the other mammalian GDHs. Also, trypsin was unable to cleave the labeled peptide at this site. Both amino acid sequencing and compositional analysis identified Lys-306 as the site of o-phthalaldehyde binding within the brain GDH isoproteins.  相似文献   

6.
7.
8.
The gdhA gene encoding glutamate dehydrogenase (GDH) from the hyperthermophilic archaeon Pyrococcus sp. KOD1 was cloned and sequenced. Phylogenetic analysis was performed on an alignment of 25 GDH sequences including KOD1-GDH, and two protein families were distinguished, as previously reported. KOD1-GDH was classified as new member of the hexameric GDH Family II. The gdhA gene was expressed in Escherichia coli, and recombinant KOD1-GDH was purified. Its enzymatic characteristics were compared with those of the native KOD1-GDH. Both enzymes had a molecular mass of 47 300 Da and were shown to be functional in a hexameric form (284 kDa). The N-terminal amino acid sequences of native KOD1-GDH and the recombinant GDH were VEIDPFEMAV and MVEIDPFEMA, respectively, indicating that native KOD1-GDH does not retain the initial methionine at the N-terminus. The recombinant GDH displayed enzyme characteristics similar to those of the native GDH, except for a lower level of thermostability, with a half-life of 2 h at 100° C, compared to 4 h for the native enzyme purified from KOD1. Kinetic studies suggested that the reaction is biased towards glutamate production. KOD1-GDH utilized both coenzymes NADH and NADPH, as do most eukaryal GDHs. Received: 6 May 1997 / Accepted: 23 September 1997  相似文献   

9.
谷氨酸脱氢酶 (GDH)是谷氨酸生物合成的关键酶 ,谷氨酸棒杆菌S91 1 4是目前我国味精工业应用最广泛的生产菌种 ,其谷氨酸脱氢酶的研究尚未见报道。分离纯化该菌中的谷氨酸脱氢酶 ,研究其辅酶组成 ,对揭示谷氨酸脱氢酶的分子结构和性质 ,提高谷氨酸产率很有必要。将培养至对数期中期的细胞离心收集并用含适量DTT、ED TA的Tris_HCl缓冲液 (pH 7 5 )洗涤 ,用Frenchpressurecellpress破碎 ,离心去除菌体碎片得无细胞抽提液。然后使用 KTA_10 0快速纯化系统经DEAE_纤维素柱、疏水柱 (HIC)、G_2 0 0凝胶过滤柱层析得到纯化大约 70倍的以NAD PH为辅酶的GDH和部分纯化的以NADH辅酶的GDH。这两个酶分别对NADPH、NADH高度专一 ,不能相互代替。经HPLC和SDS_PAGE测得前一种酶的分子量和亚基分子量分别为 188kD和 32kD ,表明该酶为具有相同亚基的六聚体。酶活性测定使用HITACHIU_30 0 0分光光度计利用NAD(P)H在 340nm氧化的初速度进行。蛋白质含量测定利用Bradford方法进行 ,并以牛血清白蛋白为标准蛋白。纯化结果表明S91 1 4中确实存在两种GDH ,其中以NADH为辅酶的GDH尚未见报道。和某些具有两种GDH的微生物一样 ,S91 1 4可能也是以NADPH为辅酶的GDH参与谷氨酸的合成代谢 ,以NADH为辅酶的GDH参与谷氨酸的分解代谢。  相似文献   

10.
Glutamate dehydrogenases (GDHs) from fresh-water and marine hyperthermophilic Archaea were compared with respect to their responses to different salt concentrations. A gene encoding GDH from the terrestrial hyperthermophilic archaeon Thermococcus waiotapuensis (Twaio) was cloned, sequenced, and expressed at a high level in Escherichia coli. The deduced amino acid sequence, which consists of 418 amino acid residues, revealed a high degree of similarity with GDHs from related marine strains such as Thermococcus litoralis (Tl) and Pyrococcus furiosus (Pfu). Recombinant Twaio GDH was purified 27-fold to homogeneity. The enzyme is hexameric with a molecular weight of 259,000. The effects of several salts (KCl, CaCl, MgSO4), temperature, and pH on enzyme activity were determined and compared in three hyperthermophilic GDHs, including T. waiotapuensis, and GDHs from two marine species, T. litoralis and P. furiosus. Kinetic studies suggested a biosynthetic role for the nicotinamide adenine dinucleotide phosphate- (NADP-) specific Twaio GDH in the cell. Interestingly, Twaio GDH revealed no salt responses, whereas the two marine GDHs showed substantial enhancement of activity as well as thermostability at increasing salt concentrations. Because electrostatic interactions between charged amino acid residues are thought to be a key feature of structural integrity and thermostability in hyperthermophilic GDHs, salt availability and its effects on marine enzymes could partially explain a higher thermal stability in marine species than in phyletically related fresh-water species.  相似文献   

11.
The gene encoding the NAD(+)-dependent glutamate dehydrogenase (GDH) of Clostridium symbiosum was cloned using the polymerase chain reaction (PCR) because it could not be recovered by standard techniques. The nucleotide sequence of the gdh gene was determined and it was overexpressed from the controllable tac promoter in Escherichia coli so that active clostridial GDH represented 20% of total cell protein. The recombinant plasmid complemented the nutritional lesion of an E. coli glutamate auxotroph. There was a marked difference between the nucleotide compositions of the coding region (G + C = 52%) and the flanking sequences (G + C = 30% and 37%). The structural gene encoded a polypeptide of 450 amino acid residues and relative molecular mass (M(r) 49,295 which corresponds to a single subunit of the hexameric enzyme. The DNA-derived amino acid sequence was consistent with a partial sequence from tryptic and cyanogen bromide peptides of the clostridial enzyme. The N-terminal amino acid sequence matched that of the purified protein, indicating that the initiating methionine is removed post-translationally, as in the natural host. The amino acid sequence is similar to those of other bacterial GDHs although it has a Gly-Xaa-Gly-Xaa-Xaa-Ala motif in the NAD(+)-binding domain, which is more typical of the NADP(+)-dependent enzymes. The sequence data now permit a detailed interpretation of the X-ray crystallographic structure of the enzyme and the cloning and expression of the clostridial gene will facilitate site-directed mutagenesis.  相似文献   

12.
A new class of glutamate dehydrogenase (GDH) is reported. The GDH of Streptomyces clavuligerus was purified to homogeneity and characterized. It has a native molecular mass of 1,100 kDa and exists as an alpha(6) oligomeric structure composed of 183-kDa subunits. GDH, which requires AMP as an essential activator, shows a maximal rate of catalysis in 100 mm phosphate buffer, pH 7.0, at 30 degrees C. Under these conditions, GDH displayed hyperbolic behavior toward ammonia (K(m), 33 mm) and sigmoidal responses to changes in alpha-ketoglutarate (S(0.5) 1.3 mm; n(H) 1.50) and NADH (S(0.5) 20 microm; n(H) 1.52) concentrations. Aspartate and asparagine were found to be allosteric activators. This enzyme is inhibited by an excess of NADH or NH(4)(+), by some tricarboxylic acid cycle intermediates and by ATP. This GDH seems to be a catabolic enzyme as indicated by the following: (i) it is NAD-specific; (ii) it shows a high value of K(m) for ammonia; and (iii) when S. clavuligerus was cultured in minimal medium containing glutamate as the sole source of carbon and nitrogen, a 5-fold increase in specific activity of GDH was detected compared with cultures provided with glycerol and ammonia. GDH has 1,651 amino acids, and it is encoded by a DNA fragment of 4,953 base pairs (gdh gene). It shows strong sequence similarity to proteins encoded by unidentified open reading frames present in the genomes of species belonging to the genera Mycobacterium, Rickettsia, Pseudomonas, Vibrio, Shewanella, and Caulobacter, suggesting that it has a broad distribution. The GDH of S. clavuligerus is the first member of a class of GDHs included in a subfamily of GDHs (large GDHs) whose catalytic requirements and evolutionary implications are described and discussed.  相似文献   

13.
In this study, we investigated the effect of pressure on protein structure and stability at high temperature. Thermoinactivation experiments at 5 and 500 atm were performed using the wild-type (WT) enzyme and two single mutants (D167T and T138E) of the glutamate dehydrogenase (GDH) from the hyperthermophile Thermococcus litoralis. All three GDHs were stabilized, although to different degrees, by the application of 500 atm. Interestingly, the degree of pressure stabilization correlated with GDH stability as well as the magnitude of electrostatic repulsion created by residues at positions 138 and 167. Thermoinactivation experiments also were performed in the presence of trehalose. Addition of the sugar stabilized all three GDHs; the degree of sugar-induced thermostabilization followed the same order as pressure stabilization. Previous studies suggested a mechanism whereby the enzyme adopts a more compact and rigid structure and volume fluctuations away from the native state are diminished under pressure. The present results on the three GDHs allowed us to further confirm and refine the proposed mechanism for pressure-induced thermostabilization. In particular, we propose that pressure stabilizes against thermoinactivation by shifting the equilibrium between conformational substates of the GDH hexamer, thus inhibiting irreversible aggregation.  相似文献   

14.
As the result of two mutually compensating frameshift mutations, three successive codons with third-position A were generated in the Neurospora crassa am (NADP-specific glutamate dehydrogenase: GDH) gene. These codons do not occur at all elsewhere in the gene and only infrequently in other highly expressed Neurospora genes. The double-frameshift strain produces only 25 to 35% of the normal level of GDH, whether measured as enzyme activity or as immunoprecipitable protein, but its level of GDH mRNA is normal. Although the modified enzyme is somewhat more heat-sensitive than the wild-type in vitro, its stability in vivo was found to be indistinguishable from that of the wild-type. It is concluded that the introduction of consecutive rare codons reduces the efficiency of translation of the mRNA. The possible mechanisms of such an effect are discussed.  相似文献   

15.
16.
17.
18.
Interconversion between glutamate and 2-oxoglutarate, which can be catalysed by glutamate dehydrogenase (GDH), is a key reaction in plant carbon (C) and nitrogen (N) metabolism. However, the physiological role of plant GDH has been a controversial issue for several decades. To elucidate the function of GDH, the expression of GDH in various tissues of Arabidopsis thaliana was studied. Results suggested that the expression of two Arabidopsis GDH genes was differently regulated depending on the organ/tissue types and cellular C availability. Moreover, Arabidopsis mutants defective in GDH genes were identified and characterized. The two isolated mutants, gdh1-2 and gdh2-1, were crossed to make a double knockout mutant, gdh1-2/gdh2-1, which contained negligible levels of NAD(H)-dependent GDH activity. Phenotypic analysis on these mutants revealed an increased susceptibility of gdh1-2/gdh2-1 plants to C-deficient conditions. This conditional phenotype of the double knockout mutant supports the catabolic role of GDH and its role in fuelling the TCA cycle during C starvation. The reduced rate of glutamate catabolism in the gdh2-1 and gdh1-2/gdh2-1 plants was also evident by the growth retardation of these mutants when glutamate was supplied as the alternative N source. Furthermore, amino acid profiles during prolonged dark conditions were significantly different between WT and the gdh mutant plants. For instance, glutamate levels increased in WT plants but decreased in gdh1-2/gdh2-1 plants, and aberrant accumulation of several amino acids was detected in the gdh1-2/gdh2-1 plants. These results suggest that GDH plays a central role in amino acid breakdown under C-deficient conditions.  相似文献   

19.
It has been reported that the hyperinsulinism-hyperammonemia syndrome is caused by mutations in glutamate dehydrogenase (GDH) gene that affects enzyme sensitivity to GTP-induced inhibition. To identify the GTP binding site(s) within human GDH, mutant GDHs at Tyr-266 or Lys-450 position were constructed by cassette mutagenesis. More than 90% of the initial activities were remained at the concentration of GTP up to 300 microm for the Lys-450 mutant GDHs regardless of their size, hydrophobicity, and ionization of the side chains, whereas the wild type GDH and the Tyr-266 mutant GDHs were completely inhibited by 30 microm GTP. The binding of GTP to the wild type GDH or the mutant GDHs was further examined by photoaffinity labeling with 8-[gamma-(32)P]azidoguanosine 5'-triphosphate (8-N(3)-GTP). Saturation of photoinsertion with 8-N(3)-GTP occurred apparent K(d) values near 20 microm for the wild type GDH or the Tyr-266 mutant GDH, and the photoinsertion of 8-N(3)-[gamma-(32)P]GTP was significantly decreased in the presence of 300 microm GTP. Unlike the wild type GDH or the Tyr-266 mutant GDH, less than 10% of photoinsertion was detected in the Lys-450 mutant GDH, and the photoinsertion was not affected by the presence of 300 microm GTP. The results with cassette mutagenesis and photoaffinity labeling demonstrate selectivity of the photoprobe for the GTP binding site and suggest that Lys-450, but not Tyr-266, is required for efficient binding of GTP to GDH. Interestingly, studies of the steady-state velocity showed that both the wild type GDH and the Tyr-266 mutant GDHs were inhibited by ATP at concentrations between 10 and 100 microm, whereas less than 10% of the initial activities of the Lys-450 mutant GDHs were diminished by ATP. These results indicate that Lys-450, but not Tyr-266, may be also responsible for the ATP inhibition; therefore, ATP bound to the GTP site.  相似文献   

20.
A cDNA of bovine brain glutamate dehydrogenase (GDH) was isolated from a cDNA library by recombinant PCR. The isolated cDNA has an open-reading frame of 1677 nucleotides, which codes for 559 amino acids. The expression of the recombinant bovine brain GDH enzyme was achieved in E. coli. BL21 (DE3) by using the pET-15b expression vector containing a T7 promoter. The recombinant GDH protein was also purified and characterized. The amino acid sequence was found 90% homologous to the human GDH. The molecular mass of the expressed GDH enzyme was estimated as 50 kDa by SDS-PAGE and Western blot using monoclonal antibodies against bovine brain GDH. The kinetic parameters of the expressed recombinant GDH enzymes were quite similar to those of the purified bovine brain GDH. The Km and Vmax values for NAD+ were 0.1 mM and 1.08 micromol/min/mg, respectively. The catalytic activities of the recombinant GDH enzymes were inhibited by ATP in a concentration-dependent manner over the range of 10 - 100 microM, whereas, ADP increased the enzyme activity up to 2.3-fold. These results indicate that the recombinant-expressed bovine brain GDH that is produced has biochemical properties that are very similar to those of the purified GDH enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号