共查询到20条相似文献,搜索用时 0 毫秒
1.
Vogels MW van Balkom BW Kaloyanova DV Batenburg JJ Heck AJ Helms JB Rottier PJ de Haan CA 《Proteomics》2011,11(1):64-80
In this study, we applied a quantitative proteomic approach, based on SILAC, to investigate the interactions of coronaviruses with the secretory pathway of the host cell, with the aim to identify host factors involved in coronavirus replication. Comparison of the protein profiles of Golgi-enriched fractions of cells that were either mock infected or infected with mouse hepatitis virus revealed the significant depletion or enrichment of 116 proteins. Although ribosomal/nucleic acid binding proteins were enriched in the Golgi-fractions of mouse hepatitis virus-infected cells, proteins annotated to localize to several organelles of the secretory pathway were overrepresented among the proteins that were depleted from these fractions upon infection. We hypothesized that proteins, of which the abundance or distribution is affected by infection, are likely to be involved in the virus life cycle. Indeed, depletion of a small subset of the affected proteins by using small interfering RNAs identified several host factors involved in coronavirus infection. Transfection of small interfering RNAs targeting either C11orf59 or Golgi apparatus glycoprotein 1 resulted in increased virus replication, whereas depletion of vesicle-trafficking protein vesicle-trafficking protein sec22b enhanced the release of infectious progeny virus. Overexpression of these proteins, on the other hand, had a negative effect on virus replication. Overall, our study shows that the SILAC approach is a suitable tool to study host-pathogen interactions and to identify host proteins involved in virus replication. 相似文献
2.
The obligate intracellular protozoan Toxoplasma gondii establishes its replication permissive niche within the infected host cell. This niche, the parasitophorous vacuole (PV), is delimited from the host cell cytoplasm by the PV membrane (PVM). In this chapter we highlight the roles of the PVM in the remodeling of host cell architecture, nutrient acquisition, the manipulation of signaling, and touch upon the potential roles in the parasite developmental cycle. We further present the PVM as a unique and dynamic "organelle" found only within the infected cell where it is established outside the parent organism. Despite its importance little is known about the biology of the PVM. There has, however, been a recent renewal of interest in the PVM, the study of which has become more tractable with the application of both classical approaches as well as genomic and proteomic analyses. In this review we discuss the diverse activities associated with the PVM and present pressing questions that remain to be elucidated regarding this enigmatic organelle. 相似文献
3.
K. Ramachandra Kini N. S. Vasanthi S. Umesh-Kumar H. Shekar Shetty 《Plant science》2000,150(2):139-145
A major isoform of β-1,3-glucanase from pearl millet seedlings was purified following ammonium sulfate precipitation, ion-exchange chromatography and gel filtration techniques. The enzyme had a molecular weight of 20.5 kDa on SDS–PAGE and was highly basic with a pI of 9.6. It was thermostable with a broad temperature optima for activity ranging from 37 to 70°C and had an optimum pH of 5.2. Mercuric chloride and para-chloromercuric benzoate inhibited completely the enzyme while manganese chloride activated it. Antibodies raised against the purified β-1,3-glucanase identified another protein with an apparent molecular weight of 30 kDa in western reactions. Significance of this enzyme in pearl millet–downy mildew host–pathogen interaction is discussed. 相似文献
4.
Vogels MW van Balkom BW Heck AJ de Haan CA Rottier PJ Batenburg JJ Kaloyanova DV Helms JB 《Proteomics》2011,11(23):4477-4491
To identify host factors involved in Salmonella replication, SILAC-based quantitative proteomics was used to investigate the interactions of Salmonella typhimurium with the secretory pathway in human epithelial cells. Protein profiles of Golgi-enriched fractions isolated from S. typhimurium-infected cells were compared with those of mock-infected cells, revealing significant depletion or enrichment of 105 proteins. Proteins annotated to play a role in membrane traffic were overrepresented among the depleted proteins whereas proteins annotated to the cytoskeleton showed a diverse behavior with some proteins being enriched, others being depleted from the Golgi fraction upon Salmonella infection. To study the functional relevance of identified proteins in the Salmonella infection cycle, small interfering RNA (siRNA) experiments were performed. siRNA-mediated depletion of a selection of affected proteins identified five host factors involved in Salmonella infection. Depletion of peroxiredoxin-6 (PRDX6), isoform β-4c of integrin β-4 (ITGB4), isoform 1 of protein lap2 (erbin interacting protein; ERBB2IP), stomatin (STOM) or TBC domain containing protein 10b (TBC1D10B) resulted in increased Salmonella replication. Surprisingly, in addition to the effect on Salmonella replication, depletion of STOM or ITGB4 resulted in a dispersal of intracellular Salmonella microcolonies. It can be concluded that by using SILAC-based quantitative proteomics we were able to identify novel host cell proteins involved in the complex interplay between Salmonella and epithelial cells. 相似文献
5.
Schrimpf SP von Mering C Bendixen E Heazlewood JL Bumann D Omenn G Hengartner MO 《Proteomics》2012,12(3):346-350
iMOP--the Initiative on Model Organism Proteomes--was accepted as a new HUPO initiative at the Ninth HUPO meeting in Sydney in 2010. A goal of iMOP is to integrate research groups working on a great diversity of species into a model organism community. At the Tenth HUPO meeting in Geneva this variety was reflected in the iMOP session on Tuesday September 6, 2011. The presentations covered the quantitative proteome database PaxDb, proteomics projects studying farm animals, Arabidopsis thaliana, as well as host-pathogen interactions. 相似文献
6.
7.
Alexander Rabe Kristin Surmann Lars Brinkmann Jörg Bernhardt Michael Hecker Bernd Wollscheid Zhi Sun Robert L. Moritz Uwe Völker Frank Schmidt 《Proteomics》2015,15(21):3648-3661
Staphylococcus aureus is an opportunistic human pathogen, which can cause life‐threatening disease. Proteome analyses of the bacterium can provide new insights into its pathophysiology and important facets of metabolic adaptation and, thus, aid the recognition of targets for intervention. However, the value of such proteome studies increases with their comprehensiveness. We present an MS–driven, proteome‐wide characterization of the strain S. aureus HG001. Combining 144 high precision proteomic data sets, we identified 19 109 peptides from 2088 distinct S. aureus HG001 proteins, which account for 72% of the predicted ORFs. Peptides were further characterized concerning pI, GRAVY, and detectability scores in order to understand the low peptide coverage of 8.7% (19 109 out of 220 245 theoretical peptides). The high quality peptide‐centric spectra have been organized into a comprehensive peptide fragmentation library (SpectraST) and used for identification of S. aureus‐typic peptides in highly complex host–pathogen interaction experiments, which significantly improved the number of identified S. aureus proteins compared to a MASCOT search. This effort now allows the elucidation of crucial pathophysiological questions in S. aureus‐specific host–pathogen interaction studies through comprehensive proteome analysis. The S. aureus‐specific spectra resource developed here also represents an important spectral repository for SRM or for data‐independent acquisition MS approaches. All MS data have been deposited in the ProteomeXchange with identifier PXD000702 ( http://proteomecentral.proteomexchange.org/dataset/PXD000702 ). 相似文献
8.
Sirilaksana Patramool Valérie Choumet Pornapat Surasombatpattana Laurence Sabatier Frédéric Thomas Supatra Thongrungkiat Thierry Rabilloud Nathalie Boulanger David G. Biron Dorothée Missé 《Proteomics》2012,12(23-24):3510-3523
Vector‐borne diseases (VBDs) are defined as infectious diseases of humans and animals caused by pathogenic agents such as viruses, protists, bacteria, and helminths transmitted by the bite of blood‐feeding arthropod (BFA) vectors. VBDs represent a major public health threat in endemic areas, generally subtropical zones, and many are considered to be neglected diseases. Genome sequencing of some arthropod vectors as well as modern proteomic and genomic technologies are expanding our knowledge of arthropod–pathogen interactions. This review describes the proteomic approaches that have been used to investigate diverse biological questions about arthropod vectors, including the interplay between vectors and pathogens. Proteomic studies have identified proteins and biochemical pathways that may be involved in molecular crosstalk in BFA‐pathogen associations. Future work can build upon this promising start and functional analyses coupled with interactome bioassays will be carried out to investigate the role of candidate peptides and proteins in BFA‐human pathogen associations. Dissection of the host–pathogen interactome will be key to understanding the strategies and biochemical pathways used by BFAs to cope with pathogens. 相似文献
9.
José J. Espino Gerardo Gutiérrez‐Sánchez Nélida Brito Punit Shah Ron Orlando Celedonio González 《Proteomics》2010,10(16):3020-3034
The extracellular proteome, or secretome, of phytopathogenic fungi is presumed to be a key element of their infection strategy. Especially interesting constituents of this set are those proteins secreted at the beginning of the infection, during the germination of conidia on the plant surfaces or wounds, since they may play essential roles in the establishment of a successful infection. We have germinated Botrytis cinerea conidia in conditions that resemble the plant environment, a synthetic medium enriched with low molecular weight plant compounds, and we have collected the proteins secreted during the first 16 h by a double precipitation protocol. 2‐D electrophoresis of the precipitated secretome showed a spot pattern similar for all conditions evaluated and for the control medium without plant extract. The proteins in 16 of these spots were identified by PMF and corresponded to 11 different polypeptides. Alternative determination of secretome composition by LC‐MS/MS of tryptic fragments rendered a much larger number, 105 proteins, which included all previously identified by PMF. All proteins were functionally classified according to their putative function in the infection process. Key features of the early secretome include a large number of proteases, the abundance of proteins involved in the degradation of plant defensive barriers, and plenty of proteins with unknown function. 相似文献
10.
Prithiviraj B Bais HP Jha AK Vivanco JM 《The Plant journal : for cell and molecular biology》2005,42(3):417-432
Staphylococcus aureus is a ubiquitous gram-positive bacterium that can cause superficial to serious systemic infections in animals and humans. Here we report the development of a plant infection model to study the pathogenesis of this bacterium. Three global regulatory mutants, RN6911 (agr-), ALC 488 (sarA-) ALC 842 (sarA-/agr-) and an alpha-toxin mutant defective in biofilm formation (DU1090) which are attenuated in animal pathogenesis, were also attenuated in their ability to infect plants, suggesting that these regulators that mediate synthesis of virulence factors essential for animal pathogenesis are also required for plant pathogenesis. Further, using Arabidopsis plants altered in defense responses such as the transgenic lines NahG [defective in salicylic acid (SA) accumulation], and 35S-LOX2- (defective in jasmonic acid production and hyper-accumulator of SA), and mutants ics1 (depleted in SA accumulation), and npr1-1 (non-expressor of pathogenesis-related protein) we show that resistance of Arabidopsis to typical plant pathogens and the animal pathogen S. aureus is conserved and is mediated by SA. The data presented here suggest that Arabidopsis thaliana resistance to S. aureus is mediated either by a direct effect of SA on the pathogen, specifically one that affects the attachment/aggregate formation on the root surface and reduces the pathogen's virulence, or by SA-dependent, NPR1-independent host responses. 相似文献
11.
Sabine Kind Selma Schurack Janine Hinsch Paul Tudzynski 《Molecular Plant Pathology》2018,19(4):1005-1011
To investigate its susceptibility to ergot infection, we inoculated Brachypodium distachyon with Claviceps purpurea and compared the infection symptoms with those on rye (Secale cereale). We showed that, after inoculation of Brachypodium with Claviceps, the same disease symptoms occurred in comparable temporal and spatial patterns to those on rye. The infection rate of Claviceps on this host was reduced compared with rye, but the disease could be surveyed by fungal genomic DNA quantification. Mutants of Claviceps which were virulence attenuated on rye were also affected on Brachypodium. We were able to show that pathogenesis‐related gene expression changed in a typical manner for biotrophic pathogen attack. Our results indicated that the Claviceps–Brachypodium interaction was dependent on salicylic acid, cytokinin and auxin. We consider Brachypodium to be a suitable and useful alternative host; the increased sensitivity compared with rye will be valuable for the identification of infection mechanisms. Future progess in understanding the Claviceps–plant interaction will be facilitated by the use of a well‐characterized model host system. 相似文献
12.
13.
Kurtz J 《Zoology (Jena, Germany)》2007,110(5):336-343
The immunocompetence-handicap hypothesis posits that costly male ornament traits might function to signal superior heritable immunocompetence to females. Quite a number of studies have aimed at testing this hypothesis. Yet the empirical data obtained so far are ambiguous. Many studies analysed the phenotypic correlation between handicap expression and immunocompetence at the same time point. However, since immunocompetence may change drastically over an individual's lifetime, such a singular measurement may not represent genetic differences among males and the benefits of choosing handicapped males for females might thus be weak. Here, I tested the correlation of a potential immunocompetence-handicap, the production of salivary secretions as nuptial gifts in a scorpionfly (Panorpa vulgaris), with immunocompetence at two different time points. I found a positive correlation with the handicap, but only if immunocompetence was measured shortly after expression of the handicap, i.e. briefly after mating in 2 weeks old scorpionflies. By contrast, there was no correlation with immunocompetence of the same flies at a younger age, i.e. shortly after adult emergence and a weak, insignificant trend for increased immunocompetence in offspring. These results are in agreement with positive phenotypic correlations between immunocompetence and handicap expression reported from other species, but advise caution when generalizing such one-time correlations. 相似文献
14.
Paterson S 《International journal for parasitology》2005,35(14):1539-1545
A key requirement for several theories involving the evolution of sex and sexual selection is a specificity between host and parasite genotypes, i.e. the resistance of particular host genotypes to particular parasite genotypes and the infectivity of particular parasite genotypes for particular host genotypes. Determining the scope and nature of any such specificity is also of applied relevance, since any specificity for different parasite genotypes to infect particular host genotypes may affect the level of protection afforded by vaccination, the efficacy of selective breeding of livestock for parasite resistance and the long-term evolution of parasite populations in response to these control measures. Whereas we have some evidence for the role of specificity between host and pathogen genotypes in viral and bacterial infections, its role in macroparasitic infections is seldom considered. The first empirical test of this specificity for a vertebrate–nematode system is provided here using clonal lines of parasite and inbred and congenic strains of rat that differ either across the genome or only at the major histocompatibility complex. Although significant differences between the resistance of host genotypes to infection and between the fitness of different parasite genotypes are found, there is no evidence for an interaction between host and parasite genotypes. It is concluded that a specificity between host and parasite genotypes is unlikely in this system. 相似文献
15.
ANGELA N. LAWS THERESE C. FRAUENDORF JESÚS E. GÓMEZ ISABEL M. ALGAZE 《Ecological Entomology》2009,34(6):702-708
1. Prey interact with multiple kinds of enemies such as predators, parasites, and pathogens. Interactions among enemies can alter prey dynamics but they are often studied separately. 2. During the summers of 2005–2006, we conducted a field experiment to examine interactions among grasshoppers, spider predators, and a lethal fungal pathogen of grasshoppers. Grasshopper nymphs were stocked into field enclosures. Predation was manipulated by adding spiders to enclosures on day 1, day 5, or day 10 of the experiment, or no spiders were added. We monitored grasshopper survival and grasshopper mortality from fungal pathogens for 4 weeks. 3. Fungal pathogens were abundant in 2005 but not in 2006, probably because of favourable weather conditions in 2005. When fungal pathogens were abundant, spider presence reduced grasshopper mortality from fungal pathogens, but only when spiders were present early in the experiment (added on day 1 or day 5). 4. The outcome of predator–prey interactions varied between years, probably as a result of differences in pathogen prevalence. In 2005, spider presence reduced the number of deaths from the pathogen, leading to a slight trend of increased grasshopper density. However, in 2006, when pathogens were not an important source of mortality, spider predation was compensatory. 相似文献
16.
Wolf C Kusch H Monecke S Albrecht D Holtfreter S von Eiff C Petzl W Rainard P Bröker BM Engelmann S 《Proteomics》2011,11(12):2491-2502
Staphylococcus aureus colonizes and infects humans as well as animals. In the present study, 17 S. aureus strains isolated from cows suffering from mastitis were characterized. The well-established multilocus sequence typing (MLST) technique and a diagnostic microarray covering 185 S. aureus virulence and resistance genes were used for genetic and epidemiological analyses. Virulence gene expression studies were performed by analyzing the extracellular protein pattern of each isolate on 2-D gels. By this way, a pronounced heterogeneity of the extracellular proteome between the bovine isolates has been observed which was attributed to genome plasticity and variation of gene expression. Merely 12 proteins were expressed in at least 80% of the isolates, i.e. Atl, Aur, GlpQ, Hla, LtaS, Nuc, PdhB, SAB0846, SAB2176, SAB0566, SspA, and SspB forming the core exoproteome. Fifteen extracellular proteins were highly variably expressed and only present in less than 20% of the isolates. This includes the serine proteases SplB, C, and F, and the superantigens SEC-bov, SEL and TSST-1. Compared to human isolates we identified at least six proteins with significantly different expression frequencies. While SAB0846 was expressed more frequently in bovine isolates, LytM, EbpS, Spa, Geh, and LukL1 were seen less frequently in these isolates. 相似文献
17.
Frank Schmidt Sandra S. Scharf Petra Hildebrandt Marc Burian Jörg Bernhardt Vishnu Dhople Julia Kalinka Melanie Gutjahr Elke Hammer Uwe Völker 《Proteomics》2010,10(15):2801-2811
Staphylococcus aureus is a versatile Gram‐positive pathogen that gains increasing importance due to the rapid spreading of resistances. Functional genomics technologies can provide new insights into the adaptational network of this bacterium and its response to environmental challenges. While functional genomics technologies, including proteomics, have been extensively used to study these phenomena in shake flask cultures, studies of bacteria from in vivo settings lack behind. Particularly for proteomics studies, the major bottleneck is the lack of sufficient proteomic coverage for low numbers of cells. In this study, we introduce a workflow that combines a pulse‐chase stable isotope labelling by amino acids in cell culture approach with high capacity cell sorting, on‐membrane digestion, and high‐sensitivity MS to detect and quantitatively monitor several hundred S. aureus proteins from a few million internalised bacteria. This workflow has been used in a proof‐of‐principle experiment to reveal changes in levels of proteins with a function in protection against oxidative damage and adaptation of cell wall synthesis in strain RN1HG upon internalisation by S9 human bronchial epithelial cells. 相似文献
18.
During infection, our innate immune system is the first line of defense and has evolved to clear invading bacteria immediately. To do so, recognition is the key element. However, how does the innate immune system distinguish self from nonself, and how does it recognize all bacteria (estimated to be far over a million species)? The answer lies in the recognition of evolutionary conserved structures. In this review, we approach this phenomenon from the bacterial perspective. What are the evolutionary conserved structures in bacteria, and what strategies are there in the human innate immune system to sense these structures? We illustrate most examples both at the functional as well as at the molecular level. Furthermore, we highlight how pathogenic bacteria can evade this recognition to survive better in the human host which in turn can result in life‐threatening diseases. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
19.
Dieter Haebich Hein-Peter Kroll Hans-Georg Lerchen 《Bioorganic & medicinal chemistry letters》2009,19(22):6317-6318
Arginine–pyrimidine conjugates represent a novel class of compounds that exhibits therapeutic and prophylactic activity in lethal infections by Gram-positive and Gram-negative bacteria without showing antibacterial activity in vitro. 相似文献
20.
Anetta Hartlova Lukas Cerveny Martin Hubalek Zuzana Krocova Jiri Stulik 《Microbiology and immunology》2010,54(4):237-245
Pathogenic bacteria have developed various mechanisms to evade host immune defense systems. Invasion of pathogenic bacteria requires interaction of the pathogen with host receptors, followed by activation of signal transduction pathways and rearrangement of the cytoskeleton to facilitate bacterial entry. Numerous bacteria exploit specialized plasma membrane microdomains, commonly called membrane rafts, which are rich in cholesterol, sphingolipids and a special set of signaling molecules which allow entry to host cells and establishment of a protected niche within the host. This review focuses on the current understanding of the raft hypothesis and the means by which pathogenic bacteria subvert membrane microdomains to promote infection. 相似文献