首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The D values of Yersinia enterocolitica strains IP134, IP107, and WA, irradiated at 25 degrees C in Trypticase soy broth, ranged from 9.7 to 11.8 krad. When irradiated in ground beef at 25 and -30 degrees C, the D value of strain IP107 was 19.5 and 38.8 krad, respectively. Cells suspended in Trypticase soy broth were more sensitive to storage at -20 degrees C than those mixed in ground beef. The percentages of inactivation and of injury (inability to form colonies in the presence of 3.0% NaCl) of cells stored in ground beef for 10 days at -20 degrees C were 70 and 23%, respectively. Prior irradiation did not alter the cell's sensitivity to storage at -20 degrees C, nor did storage at -20 degrees C alter the cell's resistance to irradiation at 25 degrees C. Added NaCl concentrations of up to 4.0% in Trypticase soy agar (TSA) (which contains 0.5% NaCl) had little effect on colony formation at 36 degrees C of unirradiated Y. enterocolitica. With added 4.0% NaCl, 79% of the cells formed colonies at 36 degrees C; with 5.0% NaCl added, no colonies were formed. Although 2.5% NaCl added to ground beef did not sensitize Y. enterocolitica cells to irradiation, when added to TSA it reduced the number of apparent radiation survivors. Cells uninjured by irradiation formed colonies on TSA when incubated at either 36 or 5 degrees C. More survivors of an exposure to 60 krad were capable of recovery and forming colonies on TSA when incubated at 36 degrees C for 1 day than at 5 degrees C for 14 days. This difference in count was considered a manifestation of injury to certain survivors of irradiation.  相似文献   

2.
Radiation Resistance and Injury of Yersinia enterocolitica   总被引:5,自引:5,他引:0       下载免费PDF全文
The D values of Yersinia enterocolitica strains IP134, IP107, and WA, irradiated at 25°C in Trypticase soy broth, ranged from 9.7 to 11.8 krad. When irradiated in ground beef at 25 and −30°C, the D value of strain IP107 was 19.5 and 38.8 krad, respectively. Cells suspended in Trypticase soy broth were more sensitive to storage at −20°C than those mixed in ground beef. The percentages of inactivation and of injury (inability to form colonies in the presence of 3.0% NaCl) of cells stored in ground beef for 10 days at −20°C were 70 and 23%, respectively. Prior irradiation did not alter the cell's sensitivity to storage at −20°C, nor did storage at −20°C alter the cell's resistance to irradiation at 25°C. Added NaCl concentrations of up to 4.0% in Trypticase soy agar (TSA) (which contains 0.5% NaCl) had little effect on colony formation at 36°C of unirradiated Y. enterocolitica. With added 4.0% NaCl, 79% of the cells formed colonies at 36°C; with 5.0% NaCl added, no colonies were formed. Although 2.5% NaCl added to ground beef did not sensitize Y. enterocolitica cells to irradiation, when added to TSA it reduced the number of apparent radiation survivors. Cells uninjured by irradiation formed colonies on TSA when incubated at either 36 or 5°C. More survivors of an exposure to 60 krad were capable of recovery and forming colonies on TSA when incubated at 36°C for 1 day than at 5°C for 14 days. This difference in count was considered a manifestation of injury to certain survivors of irradiation.  相似文献   

3.
Freezing of the enteropathogenic bacterium Yersinia enterocolitica to -18 and -75 degrees C caused 7 and 42% cell death, respectively, and 0.329 and 0.588 single-strand breaks per 10(8) daltons of DNA, respectively, while radiation to one D10 dose (10% cell survival) combined with freezing to 2 to 0, -18, and -75 degrees C induced 0.05, 0.75, and 5.04 single-strand breaks, respectively. The increase in the effectiveness of radiation with respect to the yield of single-strand breaks at -18 and -75 degrees C is contrary to expectation and seems to be due to arrest of repair of single-strand breaks by these low temperatures.  相似文献   

4.
The effect of various stages of the irradiation processing of beef on the injury and inactivation of radiation-resistant Moraxella-Acinetobactor cells was studied. Moraxella-Acinetobacter cells were more resistant to heat inactivation and injury when heated in meat with salts (0.75% NaCl and 0.375% sodium tripolyphosphate) then in meat without salts. These salts had no effect on radiation resistance. Both radiation- and heat-injured cells were unable to form colonies at 30 degrees C in plate count agar containing 0.8% NaCl. Neither unstressed nor heat-stressed cells were able to multiply in minced beef incubated at 30 degrees C for 12 h. Only after the beef was diluted 1:10 with peptone water were the heat-injured cells able to repair and eventually multiply. Heated cells were more sensitive to radiation inactivation and injury than unheated cells. After repair, the cells regained their resistance to both NaCl and irradiation. Freezing and storage at -40 degrees C for 14 days had only a slight effect on either unstressed or heat-stressed cells.  相似文献   

5.
The mechanism of cell injury during slow freezing was examined using PC-3 human prostate adenocarcinoma cells suspended in NaCl solutions. The objective was to evaluate contribution of extracellular ice and the 'solution effects' to freezing injury separately. The solution effects that designate the influence of elevated concentration were evaluated from a pseudo-freezing experiment, where cells were subjected to the milieu that simulated a freeze-thaw process by changing the NaCl concentration and the temperature at the same time. The effect of extracellular ice formation on cell injury was then estimated from the difference in cell survival between the pseudo-freezing experiment and a corresponding freezing experiment. When cells were frozen to a relatively higher freezing temperature at -10 degrees C, about 30% of cells were damaged mostly due to extracellular ice formation, because the concentration increase without ice formation to 2.5-M NaCl, i.e., the equilibrium concentration at -10 degrees C, had no effect on cell survival. In contrast, in the case of the lower freezing temperature at -20 degrees C, about 90% of cells were injured by both effects, particularly 60-80% by the solution effects among them. The present results suggested that the solution effects become more crucial to cell damage during slow freezing at lower temperatures, while the effect of ice is limited to some extent.  相似文献   

6.
Human adenovirus type 2 (Ad 2) was irradiated with 137Cs gamma rays in the liquid state at 0 degree C. DNA breaks were correlated with the inactivation of several viral functions and compared to results obtained previously for irradiation of Ad 2 under frozen conditions at -75 degrees C. Irradiation at 0 degree C induced 170 +/- 20 single-strand breaks and 2.6 +/- 0.4 double-strand breaks/Gy/10(12) Da in the viral DNA. Viral adsorption to human KB cells was inactivated with a D0 of 9.72 +/- 1.18 kGy, whereas the inactivation of Ad 2 plaque formation had a D0 of 0.99 +/- 0.14 or 1.1 +/- 0.29 kGy when corrected for the effect of radiation on virus adsorption. For the adsorbed virus, an average of 4.3 +/- 1.7 single-strand and 0.065 +/- 0.02 double-strand breaks were induced in the viral DNA per lethal hit. In contrast, irradiation of Ad 2 at -75 degrees C results in 2.6- to 3.4-fold less DNA breakage per Gy and a 5.6-fold increase in D0 for plaque formation of the adsorbed virus. Furthermore, although host cell reactivation (HCR) of Ad 2 viral structural antigen production for irradiated virus was substantially reduced in the xeroderma pigmentosum fibroblast strain (XP25RO) compared to normal strains for irradiation at -75 degrees C (57% HCR), it was only slightly reduced compared to normal for irradiation at 0 degree C (88% HCR). These results indicate that the spectrum of DNA damage is both quantitatively and qualitatively different for the two conditions of irradiation.  相似文献   

7.
The effects of C7-alkylhydroxybenzene (C7-AHB) and p-hydroxyethylphenol (tyrosol), chemical analogs of microbial anabiosis autoregulators, on the viability of yeast cells under oxidative stress were investigated. The stress was caused by reactive oxygen species (ROS) produced under gamma irradiation of cell suspensions using doses of 10-150 krad at an intensity of 194 rad/s or by singlet oxygen generated in cells photosensibilized with chlorin e6 (10 micrograms/l). C7-AHB was found to exert a protective effect. The addition of 0.05-0.16 vol% of C7-AHB to cell suspensions 30 min before irradiation protected yeast cells from gamma radiation (50 krad). The protective effect of C7-AHB manifested itself both in the preservation of cell viability during irradiation and in the recovery of their capacity to proliferate after irradiation. In our studies on photodynamic cell inactivation, the fact that the phenolic antioxidant C7-AHB protects cells from intracellular singlet oxygen was revealed for the first time. The analysis of difference absorption spectra of oxidized derivatives of C7-AHB demonstrated that the protective mechanism of C7-AHB involves the scavenging of ROS resulting from oxidative stress. The fact that tyrosol failed to perform a photoprotective function suggests that the antioxidant properties of microbial C7-AHB are not related to their chaperon functions. The results obtained make an important addition to the spectrum of known antioxidant and antistress effects of phenolic compounds.  相似文献   

8.
The interactive effects of solutes, potassium sorbate and incubation temperature on growth, heat resistance and tolerance to freezing of Zygosaccharomyces rouxii were investigated. Growth rates in media supplemented with glucose, sucrose or NaCl to aw 0.93 were more rapid than in unsupplemented media (aw 0.99). Although growth in unsupplemented medium was lower at 35 degrees C, incubation at 21 degrees C or 35 degrees C had little effect on growth in media supplemented with glucose and sucrose. The addition of 300 micrograms potassium sorbate/ml to media resulted in reduced growth rates, particularly at 35 degrees C. Heat resistance of Z. rouxii was substantially greater in cultures previously incubated at 35 degrees C than in cultures incubated at 21 degrees C in media both with and without 300 micrograms potassium sorbate/ml. Zygosaccharomyces rouxii was tolerant to freezing at -18 degrees C for up to 120 d in all test media supplemented with glucose, sucrose or NaCl. The addition of 300 micrograms potassium sorbate/ml to sucrose-supplemented media resulted in increased resistance to freezing in cultures previously incubated at 21 degrees C. Sensitivity to freezing increased when cultures were incubated at 21 degrees C in media not supplemented with solutes. Glucose and sucrose provided the best protection against inactivation by heating and freezing, regardless of the presence of potassium sorbate in growth media.  相似文献   

9.
Effects of thermoradiation on bacteria.   总被引:2,自引:2,他引:0       下载免费PDF全文
A 60Co source was used to determine the effects of thermoradiation on Achromobacter aquamarinus, Staphylococcus aureus, and vegetative and spore cells of Bacillus subtilis var. globigii. The rate of inactivation of these cultures, except vegetative-cell populations of B. subtilis, was exponential and in direct proportion to temperature. The D10 (dose that inactivates 90% of the microbial population) value for A. aquamarinus was 8.0 Krad at 25 degrees C and 4.9 Krad at 35 degrees C. For S. aureus, D10 was 9.8 and 5.3 Krad at 35 and 45 degrees C, respectively. Vegetative cells of B. subtilis demonstrated a rapid initial inactivation followed by a steady but decreased exponential rate. The D10 at 25 degrees C was 10.3 Krad, but at 35 and 45 degrees C this value was 6.2 and 3.8 Krad, respectively. Between 0 and 95 Krad, survival curves for B. subtilis spores at 75 degrees C showed slight inactivation, increasing in rat at and above 85 degrees C. The D10 values for spores at 85 and 90 degrees C were 129 and 92 Krad, respectively. Significant synergism between heat and irradiation was noted at 35 degrees C for A. aquamarinus and 45 degrees C for S. aureus. The presence of 0.1 mM cysteine in suspending media afforded protection to both cultures at these critical temperatures. On the other hand, cysteine sensitized B. subtilis spores at radiation doses greater than 100 Krad. The combined effect of heat and irradiation was more destructive to bacteria than either method alone.  相似文献   

10.
One widely accepted explanation of injury from slow freezing is that damage results when the concentration of electrolyte reaches a critical level in partly frozen solutions during freezing. We have conducted experiments on human red cells to further test this hypothesis. Cells were suspended in phosphate-buffered saline containing 0-3 M glycerol, held for 30 min at 20 degrees C to permit solute permeation, and frozen at 0.5 or 1.7 degrees C/min to various temperatures between -2 and -100 degrees C. Upon reaching the desired minimum temperature, the samples were warmed at rates ranging from 1 to 550 degrees C/min and the percent hemolysis was determined. The results for a cooling rate of 1.7 degrees C/min indicate the following: (a) Between 0.5 and 1.85 M glycerol, the temperature yielding 50% hemolysis (LT50) drops slowly from -18 to -35 degrees C. (b) The LT50's over this range of concentrations are relatively independent of warming rate. (c) With glycerol concentrations of 1.95 and 2.0 M, the LT50 drops abruptly to -60 degrees C and to below -100 degrees C, respectively, and becomes dependent on warming rate. The LT50 is lower with slow warming at 1 degree C/min than with rapid. With still higher concentrations (2.5 and 3.0 M), there is no LT50, i.e., more than 50% of the cells survive freezing to-100 degrees C. Results for cooling at 0.5 degrees C/min in 2 M glycerol were similar except that the LT50s were some 10-20 degrees C higher. A companion paper (Rall et al., Biophys. J. 23:101-120, 1978) examines the relation between survival and the concentrations of salts produced during freezing.  相似文献   

11.
The present study was conducted to observe the effect of initial freezing temperature on subsequent survival and acrosomal integrity of Malpura and Bharat Merino ram spermatozoa during post-thawing incubation. Semen samples were diluted in TEST-yolk-glycerol extender, loaded in 0.25 ml straws and cooled down to -25, -75 or -125 degrees C freezing temperature using a programmable cell freezer. Computer assisted sperm analysis and acrosomal integrity of thawed samples were assessed after thawing and at hourly intervals during incubation at 37 degrees C for 4 h. The percentage of motile cells in samples frozen at -125 degrees C were 80.3 and 63.7 after post-thawing and -thawing incubation, compared to 75.9 and 39.7 at -25 degrees C or 73.9 and 51.8 at -75 degrees C temperatures, respectively. The spermatozoa with normal acrosome were also significantly, respectively, higher in samples frozen at -125 degrees C, compared to -25 and -75 degrees C temperatures. There were no significant breed variations on percentage of motile, percentage of rapidly motile cells, percentage of normal acrosomes, curvilinear velocity and lateral head displacement except straight line velocity and average path velocity of spermatozoa. The results indicated that -125 degrees C initial freezing temperature conferred the best cryopreserving ability to ram spermatozoa for post-thawing thermoresistance test compared to -25 or -75 degrees C freezing temperature.  相似文献   

12.
Target analysis studies of red cell water and urea transport   总被引:1,自引:0,他引:1  
Radiation inactivation was used to determine the nature and molecular weight of water and urea transporters in the human red cell. Red cells were frozen to -50 degrees C in a cryoprotectant solution, irradiated with 1.5 MeV electrons, thawed, washed and assayed for osmotic water and urea permeability by stopped-flow light scattering. The freezing and thawing process did not affect the rates of water or urea transport or the inhibitory potency of p-chloromercuribenzenesulfonate (pCMBS) on water transport and of phloretin on urea transport. Red cell urea transport inactivated with radiation (0-4 Mrad) with a single target size of 469 +/- 36 kDa. 40 microM phloretin inhibited urea flux by approx. 50% at each radiation dose, indicating that urea transporters surviving radiation were inhibitable. Water transport did not inactivate with radiation; however, the inhibitory potency of 2.5 mM pCMBS decreased from 86 +/- 1% to 4 +/- 9% over a 0-2 Mrad dose range. These studies suggest that red cell water transport either required one or more low-molecular-weight proteins, or is lipid-mediated, and that the pCMBS-binding site which regulates water flow inactivates with radiation. These results also suggest that red cell urea transport is mediated by a specific, high-molecular-weight protein. These results do not support the hypothesis that a band 3 dimer (190 kDa) mediates red cell osmotic water and urea transport.  相似文献   

13.
Two enteric pathogens, Campylobacter jejuni and Yersinia enterocolitica serogroup O:3, together with Escherichia coli, were investigated for susceptibility to UV radiation at 254 nm. The UV dose required for a 3-log reduction (99.9% inactivation) of C. jejuni, Y. enterocolitica, and E. coli was 1.8, 2.7, and 5.0 mWs/cm2, respectively. Using E. coli as the basis for comparison, it appears that C. jejuni and Y. enterocolitica serogroup O:3 are more sensitive to UV than many of the pathogens associated with waterborne disease outbreaks and can be easily inactivated in most commercially available UV reactors. No association was found between the sensitivity of Y. enterocolitica to UV and the presence of a 40- to 50-megadalton virulence plasmid.  相似文献   

14.
M Shabana  J J McGrath 《Cryobiology》1988,25(4):338-354
Thermodynamic computer modeling was used to predict the freezing response of single-celled unfertilized hamster ova. The cell membrane transport characteristics were investigated, using a microscope diffusion chamber system. The mean osmotically inactive cell volume was determined to be 21.6% of the initial cell volume. An overall mean value of 0.8 +/- 0.1 micron3/micron2.min.atm (= 18 +/- 2.5 micron/sec) was determined for the membrane hydraulic coefficient, Lp. The effect of the extracellular solute concentration on Lp was determined at room temperature (approximately 23 degrees C). A thermodynamic computer model was used to predict the cell response to freezing. The predicted response was compared to the actual volumetric response observed during freezing on a temperature-controlled cryomicroscope conduction stage. The effect of the cooling rate on the nucleation temperature of unprotected ova and protected ova suspended in a 1.5 M DMSO solution was investigated. Overall mean nucleation temperatures of -13 and -57.1 degrees C were observed for unprotected and protected ova, respectively, where the mean nucleation temperature for protected ova was strongly cooling rate dependent.  相似文献   

15.
Germinating conidiospores of Neurospora crassa that were exposed to 45 degrees C, a temperature that induces a heat shock response, were protected from injury caused by freezing in liquid nitrogen and subsequent thawing at 0 degrees C. Whereas up to 90% of the control spores were killed by this freezing and slow thawing, a prior heat shock increased cell survival four- to fivefold. Survival was determined by three assays: the extent of spore germination in liquid medium, the number of colonies that grew on solid medium, and dry-weight accumulation during exponential growth in liquid culture. The heat shock-induced protection against freezing injury was transient. Spores transferred to normal growth temperature after exposure to heat shock and before freezing lost the heat shock-induced protection within 30 min. Spores subjected to freezing and thawing stress synthesized small amounts of the heat shock proteins that are synthesized in large quantities by cells exposed to 45 degrees C. Pulse-labeling studies demonstrated that neither chilling the spores to 10 degrees C or 0 degrees C in the absence of freezing nor warming the spores from 0 degrees C to 30 degrees C induced heat shock protein synthesis. The presence of the protein synthesis inhibitor cycloheximide during spore exposure to 45 degrees C did not abolish the protection against freezing injury induced by heat shock. Treatment of the cells with cycloheximide before freezing, without exposure to heat shock, itself increased spore survival.  相似文献   

16.
The influence of low (0·39–1·1%), medium (4·25%) and high (7·1–32·5%) fat levels in fish on radiation inactivation of four food-borne pathogens was investigated. Cells of Listeria monocytogenes 036, Yersinia enterocolitica F5692, Bacillus cereus and Salmonella typhimurium at logarithmic phase were inoculated in 10% fish homogenates and subjected to gamma irradiation at ice temperature (0–1 °C) with doses ranging from 0·05 to 0·8 kGy. The radiation survival curves of L. monocytogenes and B. cereus were characterized by shoulders, while a tailing effect was depicted by cells of Y. enterocolitica and B. cereus . The D10 values in kGy calculated on the exponential part of the curve ranged from 0·2 to 0·3, 0·15 to 0·25, 0·1 to 0·15 and 0·09 to 0·1 for L. monocytogenes 036, B. cereus, Salm. typhimurium and Y. enterocolitica F5692, respectively. This order (D10) of radiation resistance of each organism was not affected by the fat content of the fish. Inoculated pack studies carried out separately with each pathogen in fatty (Indian sardine, 7·1%) and lean (Golden anchovy, 0·39%) fish showed no difference in their survival after exposure to 1 kGy and 3 kGy doses, which corroborated the above observation. The practical significance of these results in the application of the technology is discussed.  相似文献   

17.
The effect of hematocrit (2 versus 75%) has been studied on human red blood cells frozen and thawed in 2 M glycerol at a range of cooling rates (0.8-850 degrees C/min) and warming rates (0.1-200 degrees C/min). The data obtained at a hematocrit of 2% agree well with the data of R. H. Miller and P. Mazur (Cryobiology 13, 404-414, 1976). The results at a hematocrit of 75% show a decrease in recovery with increased cell packing, primarily dependent on warming rate at cooling rates less than 100 degrees C/min and on cooling rate at higher cooling rates. Rapid warming reduced the packing effect, whereas cooling faster than 100 degrees C/min accentuated it. It has been argued that these effects are unlikely to be due to modulation of the generally accepted mechanisms of freezing injury, that is, solution effects and intracellular freezing. It has been suggested that they may be explained by effects of cooling and warming rates on the dimensions of the liquid channels in which the cells are accommodated during freezing and thawing.  相似文献   

18.
An unidentified halophilic archaebacterium strain 172 P1 produced three extracellular proteases in media containing 15-27% salts. One component, F-II, was purified to homogeneity. It is a serine protease that can be inhibited by phenylmethylsulfonyl fluoride and chymostatin. A high concentration of NaCl was required for its stability; in the presence of 25% NaCl, only 4% of the activity was lost by incubating at 60 degrees C for 30 min, while complete inactivation occurred in the presence of 5% NaCl. F-II is a thermophilic and halophilic protease. High activity was obtained at 75-80 degrees C when F-II was assayed in the presence of 25% NaCl. The optimal concentration of NaCl required was 10-14% when assayed at 70 degrees C with azocasein as substrate, though a halophilic characteristic was not distinct at lower temperatures. Hydrolyses of the synthetic substrates succinyl-alanyl-alanyl-prolyl-phenylalanyl-4-methylcoumaryl-7-amide or succinyl-alanyl-alanyl-alanyl-p-nitroanilide at 26 degrees C were maximal at 25 and 30% NaCl, respectively. F-II was most stable at pH 6-7, and its optimal pH was 10.7. Its molecular weight was estimated as 44,000-46,000 by sodium dodecyl sulfate--polyacrylamide gel electrophoresis and by gel filtration--high-pressure liquid chromatography. The sequence of the 35 N-terminal amino acid residues was determined and compared with that of other serine proteases.  相似文献   

19.
Cryopreservation of seabream (Sparus aurata) spermatozoa   总被引:3,自引:0,他引:3  
The aim of this research was to optimize protocols for freezing spermatozoa of seabream (Sparus aurata). All the phases of the cryopreservation procedure (sampling, choosing the cryoprotective extender, cooling, freezing, and thawing) were studied in relation to the species of spermatozoa under examination, so as to be able to restore on thawing the morphological and physiological characteristics of fresh semen. Seabream spermatozoa were collected by stripping and transported to the laboratory chilled (0-2 degrees C). Five cryoprotectants, dimethyl sulfoxide (Me(2)SO), ethylene glycol (EG), 1,2-propylene glycol (PG), glycerol, and methanol, were tested at concentrations between 5 and 15% by volume to evaluate their effect on the motility of semen exposed for up to 30 min at 26 degrees C. The less toxic cryoprotectants, 10% EG, 10% PG, and 5% Me(2)SO, respectively, were added to 1% NaCl to formulate the extenders for freezing. The semen was diluted 1:6 with the extender, inserted into 0.25-ml plastic straws by Pasteur pipette, and frozen using a cooling rate of either 10 or 15 degrees C/min to -150 degrees C followed by transfer and storage in liquid nitrogen (-196 degrees C). The straws were thawed at 15 degrees C/s. On thawing, the best motility was obtained with 5% Me(2)SO, although both 10% PG and EG showed good results; no differences were found between the two freezing gradients, although semen frozen with the 10 degrees C/min gradient showed a slightly higher and more prolonged motility.  相似文献   

20.
The thermal inactivation and injury (sensitivity to 0.8% NaCl) of a radiation-resistant culture of Moraxella-Acinetobacter mixed in minced beef were determined. Survival curves for Moraxella-Acinetobacter cells in beef had an initial shoulder preceding a logarithmic decline when the cells were heated at 65, 70, and 75 degrees C, but not at 80 degrees C. In all cases, the experimental points not included in the shoulder were linearized by means of a least-squares straight line, and the latter was used to determine D values. Shoulder values of 12.2, 4.1, and 0.6 min at temperatures of 65, 70, and 75 degrees C were added to the respective D values of 35.4, 6.6, and 1.4 min to determine the time required to destroy one log cycle. The Z value was 7.3 degrees C. Moraxella-Acinetobacter cells in meat were more rapidly injured than inactivated, on initial exposure to heat. The number of cells injured by this initial exposure increased as the temperature was increased. At 65 degrees C the percentage of injured cells increased more rapidly with exposure time than did the inactivated cells. As the temperature was increased, the rates of inactivation and injury became more and more similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号