首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 880 毫秒
1.
Incubation of human term placental mitochondria with Fe2+ and a NADPH-generating system initiated high levels of lipid peroxidation, as measured by the production of malondialdehyde. Malondialdehyde formation was accompanied by a corresponding decrease of the unsaturated fatty acid content. This NADPH-dependent lipid peroxidation was strongly inhibited by superoxide dismutase and singlet oxygen scavengers, markedly stimulated by paraquat, but was not affected by hydroxyl radical scavengers. Catalase enhanced the production of malondialdehyde by placental mitochondria. The effects of catalase and hydroxyl radical scavengers suggest that the initiation of NADPH-dependent lipid peroxidation is not dependent upon the hydroxyl radical produced via an iron-catalyzed Fenton reaction. These studies provide evidence that hydrogen peroxide strongly inhibits NADPH-dependent mitochondrial lipid peroxidation. The inhibitory effect of superoxide dismutase and stimulatory effect of paraquat, which was abolished by the addition of superoxide dismutase, suggests that superoxide may promote NADPH-dependent lipid peroxidation in human placental mitochondria.  相似文献   

2.
Dihydroxyfumaric acid induced lipid peroxidation in rat liver microsomes. This reaction was heat-insensitive contrary to the mitochondrial peroxidation reported in the previous paper, and was enhanced by p-chloromercuribenzoate. Additions of Fe2+ and Fe3+ stimulated both the lipid peroxidation and the disappearance of dihydroxyfumaric acid. On the other hand, addition of Mn2+ or Cu2+, which stimulated the disappearance of dihydroxyfumaric acid, inhibited the lipid peroxidation. Hydroxyl radical scavengers, superoxide dismutase and catalase had no effect on this lipid peroxidation and dihydroxyfumaric acid disappearance. The cytochrome p-450 content decreased about 70 % in parallel with the lipid peroxidation.  相似文献   

3.
Intracellular content of hydrogen peroxide and of the product of lipid peroxidation malonic dialdehyde as well as activity of antioxidant enzymes catalase, ascorbate peroxidase, and superoxide dismutase were studied in cells of morphogenic and derived from them non-morphogenic calluses of tatar buckwheat Fagopyrum tataricum L. Non-morphogenic calluses were characterized by significantly higher content of hydrogen peroxide and malonic dialdehyde, low catalase activity, and high activity of superoxide dismutase compared to morphogenic cultures. The results may indicate that cells of non-morphogenic calluses are in the state of continuous oxidative stress. Nevertheless, proliferative activity of non-morphogenic cultures and the biomass increase significantly exceeded these parameters in morphogenic calluses. An analogy is drawn between animal cancer cells and non-morphogenic plant calluses.  相似文献   

4.
Accelerated ageing is an accurate test indicator of seed vigor and storability that helps to understand the mechanisms of cellular and biochemical deterioration that occur during seed ageing. This study was carried out to elucidate the mechanisms of ageing in macaw palm embryos. Seeds were artificially aged during 4, 8 and 12 days at 45 °C and 100% relative humidity. After ageing, seeds were tested for viability (tetrazolium), electrical conductivity, lipid peroxidation (MDA) and hydrogen peroxide (H2O2) content. Part of the aged seeds was imbibed for 8 days and then determined the hydrogen peroxide content and the activity of antioxidant system enzymes (superoxide dismutase, catalase and glutathione reductase). Ageing reduced the embryo viability from 8 days of treatment and increased malondialdehyde content (MDA) and solute leakage. Hence, membrane permeability correlated with both loss of viability and lipid peroxidation. Imbibition after ageing significantly increased H2O2 content along with superoxide dismutase activity. Catalase activity was significantly higher than control in embryos aged from 8 days and imbibed, and glutathione reductase activity did not change. Our results suggest that macaw palm seed deterioration during accelerated ageing is closely related to lipid peroxidation, and that enzymatic antioxidant system is not completely efficient in reducing reactive oxygen species after imbibition, a critical phase to germination. Moreover, accelerated ageing test can be used as a reliable model to understand the mechanisms involved in palm seeds deterioration.  相似文献   

5.
We have demonstrated that the hemolysis of vitamin E-deficient rat erythrocytes induced by ~1 mm levels of dialuric acid occurs in three distinct phases: (1) The red cell is modified in an unknown manner in the brief time (~2 min) during which dialuric acid is oxidized by O2 to alloxan and H2O2. (2) Lipid peroxidation subsequently occurs. (3) When lipid peroxidation approaches ~75% of its maximal value hemolysis begins to occur. As measured by low-temperature EPR spectroscopy, free radicals, if formed, did not accumulate to a concentration greater than 0.1 μm. During the first phase, catalase or a mixture of catalase and superoxide dismutase (but not superoxide dismutase alone) offered considerable protection against hemolysis, while during the second phase external addition of these enzymes generally gave no protection against hemolysis and occasionally hemolysis was enhanced. Results are presented which strongly suggest that the species formed during the oxidation of dialuric acid which is active toward the cell is neither superoxide ion nor hydrogen peroxide nor a product of these substances. It is proposed that catalase reacts directly with the deleterious intermediate.  相似文献   

6.
Anuran metamorphosis is characterized by rapid and drastic changes in the body form and function under the influence of thyroid hormones. We evaluated the involvement of reactive oxygen species and antioxidant defenses during intestinal remodeling and tail regression of tadpoles of Xenopus laevis. Oxidative stress resulting from depletion in catalase and reduced glutathione, and simultaneous increase in lipid peroxidation during intestinal remodeling as well as tail regression are probably responsible for cell death and differentiation in these organs. Gene expression data for superoxide dismutase and catalase supports this contention. A dramatic increase in another antioxidant, ascorbic acid content of both these organs during metamorphic climax indicates its multifactor role such as collagen synthesis in intestine and controlled tail regression. These findings suggest that the cellular environment in the intestine and tail becomes progressively more oxidizing during its remodeling and regression respectively.  相似文献   

7.
We induced an oxidative stress by means of exogenous hydrogen peroxide in two wheat genotypes, C 306 (tolerant to water stress) and Hira (susceptible to water stress), and investigated oxidative injury and changes in antioxidant enzymes activity. H2O2 treatment caused chlorophyll degradation, lipid peroxidation, decreased membrane stability and activity of nitrate reductase. Hydrogen peroxide increased the activity of antioxidant enzymes, glutathione reductase and catalase. These effects increased with increasing H2O2 concentrations. However, no change was observed in the activity of superoxide dismutase and proline accumulation.  相似文献   

8.
Flooding effects on membrane permeability, lipid peroxidation and activated oxygen metabolism in corn (Zea mays L.) leaves were investigated to determine if activated oxygens are involved in corn flooding-injury. Potted corn plants were flooded at the 4-leaf stage in a controlled environment. A 7-day flooding treatment resulted in a significant increase in chlorophyll breakdown, lipid peroxidation (malondialdehye content), membrane permeability, and the production of superoxide (O 2 - ) and hydrogen peroxide (H2O2) in corn leaves. The effects were much greater in older leaves than in younger ones. Spraying leaves with 8-hydroxyquinoline (an O 2 - scavenger) and sodium benzoate (an .OH scavenger) reduced the oxidative damage and enhanced superoxide dismutase (SOD) activity. A short duration flooding treatment elevated the activities of SOD, catalase, ascorbate peroxidase (AP), and glutathione reductase (GR), while further flooding significantly reduced the enzyme activities but enhanced the concentrations of ascorbic acid and reduced form glutathione (GSH). It was noted that the decline in SOD activity was greater than that in H2O2 scavengers (AP and GR). The results suggested that O 2 - induced lipid peroxidation and membrane damage, and that excessive accumulation of O 2 - is due to the reduced activity of SOD under flooding stress.  相似文献   

9.
Effect of oral administration of aluminum sulphate (200 and 400 mg/kg body wt/day) without or with citric acid (62 mg/kg body wt/day) to day-old White Leghorn male chicks (n = 5 per group) for 30 days was studied on the activities of superoxide dismutase (SOD) and catalase, and level of lipid peroxidation in cerebral hemisphere and liver. A 400 mg dose of Al in the presence of citric acid inhibited cytosolic total and CN--sensitive superoxide dismutase activities of the cerebral hemisphere in 7- and 30-day treated chicks, whereas in 15-day treated chicks the enzyme activities were decreased in response to both doses in the presence of citric acid. In case of liver, activities of these enzymes significantly decreased after 7, 15 and 30 days of treatment with 200 and 400 mg Al together with citric acid, whereas 400 mg Al alone inhibited the enzyme activities after 15 and 30 days of treatment. Cerebral catalase activity decreased in response to 400 mg Al when the chicks were also fed with citric acid for 7 and 30 days, but in 15-day treated chicks the enzyme activity was depleted following treatment with 200 and 400 mg Al combined with citric acid. 400 mg Al treatment for 7 days in combination with citric acid inhibited hepatic catalase activity and extension of the treatment period to 15 and 30 days also produced reduction in its activity even in response to the lower Al dose mixed with citric acid. CN--insensitive SOD activity of cerebral hemisphere and liver was unaffected by Al. Al also failed to induce lipid peroxidation in both the tissues throughout the course of exposure. Activities of SOD and catalase of cerebral hemisphere and liver of 30-day old chicks were observed to be inhibited by in vitro incubation with different concentrations of Al. Our in vivo study demonstrates that only CN--sensitive SOD is susceptible to Al. Further, responses of SOD and catalase to Al is tissue specific. The observed inhibition of antioxidant enzyme activities by A1 is suggestive of a prooxidant state. Induction of such an oxidative condition of the tissues may be attributed to a direct effect of the metal on enzyme molecules or in their synthesis.  相似文献   

10.
Effects of flooding on the activities of some enzymes of activated oxygen metabolism, the levels of antioxidants, and lipid peroxidation in senescing leaves of tobacco were investigated. As judged by the decrease in chlorophyll and protein levels, flooding accelerated the senescence of tobacco leaves. Total peroxide and the lipid peroxidation product, malondialdehyde, increased in both control and flooding-treated leaves with increasing duration of the experiment. Throughout the duration of the experiment, flooded leaves had higher levels of total peroxide and malondialdehyde than did control leaves. Flooding resulted in an increase in peroxidase and ascorbate peroxidase activities and a reduction of superoxide dismutase activity in the senescing leaves. Glycolate oxidase, catalase, and glutathione reductase activities were not affected by flooding. Flooding increased the levels of total ascorbate and dehydroascorbate. Total glutathione, reduced form glutathione, or oxidized glutathione levels in flooded leaves were lower than in control leaves during the first two days of the experiment, but were higher than in control leaves at the later stage of the experiment. Our work suggests that senescence of tobacco induced by flooding may be a consequence of lipid peroxidation possibly controlled by superoxide dismutase activity. Our results also suggest that increased rates of hydrogen peroxide in leaves of flooded plants could lead to increased capacities of the scavenging system of hydrogen peroxide.Abbreviations GSH reduced form glutathione - GSSG oxidized form glutathione - GSSG reductase glutathione reductase - MDA malondialdehyde - SOD superoxide dismutase  相似文献   

11.
Reactive oxygen species play a key role in vascular disease, pulmonary hypertension, and hypoxic pulmonary vasoconstriction. We investigated contractile responses, intracellular Ca2+ ([Ca2+]i), Rho-kinase translocation, and phosphorylation of the regulatory subunit of myosin phosphatase (MYPT-1) and of myosin light chain (MLC20) in response to LY83583, a generator of superoxide anion, in small intrapulmonary arteries (IPA) of rat. LY83583 caused concentration-dependent constrictions in IPA and greatly enhanced submaximal PGF-mediated preconstriction. In small femoral or mesenteric arteries of rat, LY83583 alone was without effect, but it relaxed a PGF2α-mediated preconstriction. Constrictions in IPA were inhibited by superoxide dismutase and tempol, but not catalase, and were endothelium and guanylate cyclase independent. Constrictions were also inhibited by the Rho-kinase inhibitor Y27632 and the Src-family kinase inhibitor SU6656. LY83583 did not raise [Ca2+]i, but caused a Y27632-sensitive constriction in α-toxin-permeabilized IPA. LY83583 triggered translocation of Rho-kinase from the nucleus to the cytosol in pulmonary artery smooth muscle cells and enhanced phosphorylation of MYPT-1 at Thr-855 and of MLC20 at Ser-19 in IPA. This enhancement was inhibited by superoxide dismutase and abolished by Y27632. Hydrogen peroxide did not activate Rho-kinase. We conclude that in rat small pulmonary artery, superoxide triggers Rho-kinase-mediated Ca2+ sensitization and vasoconstriction independent of hydrogen peroxide.  相似文献   

12.
The present study was aimed at determining the oxidative damage caused by sodium arsenite in 3T3 fibroblast cells and the possible protective role of curcumin (Cur) against sodium arsenite toxicity. Embryonic fibroblast cells were exposed to sodium arsenite (0.01, 0.1, 1, and 10 μM) in the presence and absence of Cur (2.5 μM) for 24 hours. Cell viability, cytotoxicity, lipid peroxidation, hydroxyl radical, hydrogen peroxide, antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione‐S‐transferase) and expression levels of antioxidant genes (superoxide dismutase, catalase, and glutathione peroxidase) were measured in embryonic fibroblast cells. Results demonstrated that sodium arsenite directly affects antioxidant enzymes and genes in 3T3 embryonic fibroblast cells and induces oxidative damage by increasing the amount of hydrogen peroxide, hydroxyl radical, and lipid peroxidation in the cell. Furthermore, the study indicated that Cur might be a potential ameliorative antioxidant to protect the fibroblast cell toxicity induced by sodium arsenite.  相似文献   

13.
Our objective is to clarify the role of reactive oxygen species (ROS) in the atrophying tail of anuran tadpoles (tail apoptosis). Changes in catalase, superoxide dismutase (SOD) and caspase activity, genomic DNA, and nitric oxide (NO) generation were investigated biochemically using Rana japonica tadpole tails undergoing regression during thyroid hormone enhancement. DNA fragmentation and ladder formation with concomitant shortening of tadpole tail were induced by DL-thyroxine (T4) in culture medium. Catalase activity was also decreased by T4 treatment. T4 was also found to increase NO synthase (NOS) activity in cultured tadpole tail with concomitant increase in the concentration of NO2- plus NO3- (NOx) in the culture medium. Additional treatment with N-monomethyl-L-arginine (NMMA), a potent inhibitor of NOS, suppressed the enhancing effects of T4 on tail shortening and catalase activity reduction. It was also found that treatment with isosorbide dinitrate (ISDN), a NO generating drug, alone also had an enhancing effect on tail shortening and catalase activity reduction similar to that seen with T4. Both NO and an NO donor (ISDN) strongly suppressed catalase activity. Kinetic analysis revealed that catalase activity decreased and caspase-3-like activity increased during normal tadpole tail atrophy (apoptosis). These results suggested that T4 enhances NO generation, thereby strongly inhibiting catalase activity, resulting in an increase in hydrogen peroxide, and that the oxidative stress elicited by excess hydrogen peroxide might activate cysteine-dependent aspartate-directed protease-3 (caspase-3-like protease), which is thought to cause DNA fragmentation, leading to apoptosis.  相似文献   

14.
In this study we examined the activity of catalase in the water column (mainly attributed to planktonic microorganisms) and the activity of catalase and superoxide dismutase (SOD), as well as lipid peroxidation in the midgut gland of the benthic bivalve Donax trunculus as possible indicators of biotic stress. The measurements were performed at stations situated at known contaminated and clean sites in the coastal waters and shores along the Israeli coast (eastern Mediterranean Sea). In the water column, we found that catalase activity was higher in polluted coastal waters than in nearby unpolluted or less-polluted stations. Moreover, there was diurnal periodicity in catalase activity rates which matched the diurnal changes in hydrogen peroxide levels in seawater. Consistent evidence of extracellular catalase activity was found in the seawater sampled. Catalase activity rates in the midgut gland of D. trunculus did not exhibit clear patterns with respect to site (polluted or clean) or season. However, SOD activity and lipid peroxidation measured in the same tissues were good indicators of organic pollution in the coastal waters examined and, among the three stations examined in Haifa Bay, Qiriat Haim was the most polluted.  相似文献   

15.
Increased antioxidant activity in Cassia seedlings under UV-B radiation   总被引:2,自引:0,他引:2  
Cassia auriculata L. seedlings were irradiated with ultraviolet B (UV-B) in an environment-control chamber. The two doses assayed (7.5 and 15.0 kJ m−2) induced oxidative damage with an increase in lipid peroxidation and hydrogen peroxide and a decrease in chlorophyll and total phenol contents. The ascorbate and dehydroascorbate content as well as the reduced glutathione/oxidized glutathione content and ratio were significantly increased. The UV-B stress led to significant increases of the activity of superoxide dismutase, catalase, peroxidase and polyphenol oxidase. It is suggested that Cassia seedlings try to counteract high concentrations of oxygen species produced under UV-B stress through a co-ordinated increase in the contents and activities of antioxidants involved in their detoxification.  相似文献   

16.
The 24 h effect of low (20°C) and high (43°C) temperature on the antioxidant enzyme activities and lipid peroxidation was investigated in intact cells of the cyanobacteriumSynechocystis PCC 6803 grown at 36°C. At low temperature treated cells, the superoxide dismutase, catalase and glutathione peroxidase activities were significantly higher and the protein content lower than in high temperature treated cells. The increase of hydroxyl free radical level and malonyldialdehyde formation, when algal cells were exposed to low temperature, were due to the stimulated production of superoxide radicals O2 and hydrogen peroxide (H2O2).  相似文献   

17.
Citrate-Fe3+, reportedly a physiological chelate, exhibits superoxide dismutaselike activity, as evidenced by the inhibition of xanthine oxidase-dependent cytochrome c reduction; the dismutation of xanthine oxidase-generated superoxide to hydrogen peroxide and oxygen, and the enhanced disproportionation of potassium superoxide. The catalytic activity of citrate-Fe3+ corresponds, on a molar basis, to 0.03% of that of copper- and zinc-containing superoxide dismutase. Although weak, this activity enables citrate-Fe3+ to inhibit superoxide and ADP-Fe3+ -dependent peroxidation of extracted microsomal lipids. Also, the dismutase activity of citrate-Fe3+ interferes with its ability to promote lipid peroxidation. It is proposed that chelation of Fe3+ by citrate may represent a protective mechanism against the deleterious consequences of superoxide generation.  相似文献   

18.
Antioxidant Enzyme Responses to NaCl Stress in Cassia angustifolia   总被引:12,自引:7,他引:5  
Seeds of Cassia angustifolia Vahl. were subjected to 0, 20, 50, 100 mM NaCl for 7 d in order to study the effect of salt stress on growth parameters, endogenous Na+ and Cl concentrations, antioxidant system, lipid peroxidation, hydrogen peroxide, and proline contents. Salinity affected all of the considered parameters and caused a great reduction in plant biomass. The root and shoot length, fresh and dry mass and germination percentage were inhibited by NaCl treatments. These changes were associated with an increase in the Na+ and Cl contents in the seedlings and increased activities of superoxide dismutase, catalase, peroxidase, and polyphenol oxidase. The increased enzyme activity coincided with decreased ascorbate content and enhanced H2O2 and proline content.  相似文献   

19.
In the apical meristem of Allium fistulosum, the relationship between peroxide lipid oxidation, antioxidant activity, proliferative processes, the yield of chromosomal aberrations and duration the exposure to ionized air was studied. Under the influence of air oxygen ions, superoxide dismutase and catalase activities increased, proliferative processes were stimulated, and shifts occurred in the process of lipid peroxidation in cells of A. fistulosum. When these cells were treated with air oxygen for 40 min, hydrogen peroxide and iron sulfate (II) enhanced oxygen biostimulating effect via stimulation of antioxidant enzyme activity and inhibition of lipid peroxidation. Under these conditions, cell proliferation was intensified and the yield of chromosomal aberrations was reduced in A. fistulosum rootlets. When the time of seed treatment with ionized air was increased to 80 min, lipid peroxidation was activated, antioxidant enzyme activity was inhibited, and the yield of chromosomal aberration increased in seedlings. It was concluded that the biostimulating activity of ionized air was mediated by active oxygen species generated in the cell. The accumulation of TBA(thiobarbituric acid)-reactive products was shown to be related to a decrease in antioxidant enzyme activity and an increase in the yield of chromosomal aberrations. It is emphasized that the mutagenic effect of ionized air is associated with generating conditions that support Fenton reaction and OH-radical formation in the cell.  相似文献   

20.
In this paper we demonstrate that ascorbic acid specifically prevents NADPH-initiated cytochrome P450 (P450)-mediated microsomal lipid peroxidation in the absence of free iron. Lipid peroxidation has been evidenced by the formations of conjugated dienes, lipid hydroperoxide and malondialdehyde. Other scavengers of reactive oxygen species including superoxide dismutase, catalase, glutathione, -tocopherol, uric acid, thiourea, mannitol, histidine, -carotene and probucol are ineffective to prevent the NADPH-initiated P450-mediated free iron-independent microsomal lipid peroxidation. Using a reconstituted system comprised of purified NADPH-P450 reductase, P450 and isolated microsomal lipid or pure L--phosphatidylcholine diarachidoyl, a mechanism has been proposed for the iron-independent microsomal lipid peroxidation and its prevention by ascorbic acid. It is proposed that the perferryl moiety P450 Fe3+. O2 initiates lipid peroxidation by abstracting methylene hydrogen from polyunsaturated lipid to form lipid radical, which then combines with oxygen to produce the chain propagating peroxyl radical for subsequent formation of lipid peroxides. Apparently, ascorbic acid prevents initiation of lipid peroxidation by interacting with P450 Fe3+. O2. (Mol Cell Biochem 166: 35-44, 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号