共查询到20条相似文献,搜索用时 0 毫秒
1.
Dr. Nobuko Naito Ichiro Kawazoe Yasumitsu Nakai Hiroshi Kawauchi 《Cell and tissue research》1988,253(2):291-295
Summary Melanin-concentrating hormone (MCH) is a neurosecretory peptide that induces melanin concentration within teleost melanophores. Here, we characterized MCH-like substance in the rat brain by both an in vitro fish-scale melanophore bioassay and a radioimmunoassay with a salmon MCH antiserum that is directed toward the carboxy-terminus and requires the cyclic configuration for recognition. Furthermore, subcellular localization of the MCH in the rat brain was examined by immunocytochemistry using electron microscopy. We confirmed that MCH-immunoreactivity and MCH-bioactivity were present together in the same effluent fractions of the rat hypothalamic extracts by reverse-phase high-performance liquid chromatography (HPLC). At electron microscopic level, MCH-immunoreactivity was located specifically in secretory granules in MCH-positive cell bodies confined to the hypothalamus with their neuronal processes projecting widely in the rat brain. Although full characterization of substance must await its isolation, our results strongly support the notion that rat MCH-like substance may be homologous but not identical to salmon MCH, and simultaneously may serve some neurotransmitter and/or neuromodulator role in the brain of the rat. 相似文献
2.
B.I. Baker R.G. Kinsman C.A. Moss P.D. White P.K.C. Paul D.W. Brown M.M. Campbell D.J. Osguthorpe 《Peptides》1990,11(6):1103-1108
A number of cyclic and linear fragments and analogues of MCH were synthesized and their biological potencies tested using the isolated carp scale melanophore assay. In this system, the cyclic portion MCH(5–14) exhibited only 0.1% bioactivity, which was markedly enhanced by the addition of the exocyclic sequences MCH(15–17) and MCH(1–4). The exocyclic sequence itself, MCH(1–4, 15–17), had minimal activity, however. Substitution of Tyr11 with phenylalanine reduced the potency of the ring structure MCH(5–14) by about 4-fold. Substitution of Gly8 with D-alanine reduced the potency of MCH(5–14) 16-fold, while both substitutions together caused a still more marked reduction (200-fold) in bioactivity. Linearized fragments of MCH, extending from MCH(15–17) to [Cys(Acm)5,14]MCH(1–17), showed a progressive increase in potency. The linearized forms of MCH, MCH(5–17) and MCH(5–14), were approximately 100-fold or less potent than their cyclic forms. The significant increases in bioactivity produced by the addition of the C- and N-terminal exocyclic sequence even to these linearized forms further emphasizes the importance of these regions for interaction at the receptor site. 相似文献
3.
Maria E. Monzon Marcia M. de Souza Luciana A. Izquierdo Ivan Izquierdo Daniela M. Barros Susana R. de Barioglio 《Peptides》1999,20(12):185
The purpose of the present study was to evaluate the possible effect of melanin-concentrating hormone (MCH) on learning and memory by using the one-trial step-down inhibitory avoidance test in rats. The peptide was infused into hippocampus, amygdala, and entorhinal cortex. MCH caused retrograde facilitation when given at 0 or 4 h post-training into hippocampus, but only at 0 h into amygdala. From these results, it seems that MCH modulates memory early after training by acting on both the amygdala and hippocampus and, 4 h after training, on the hippocampus. 相似文献
4.
5.
Lim CJ Kim N Lee EK Lee BH Oh KS Yoo SE Yi KY 《Bioorganic & medicinal chemistry letters》2011,21(8):2309-2312
Compounds containing 2-arybenzimidazole ring systems linked to arylpiperidines were synthesized and evaluated as MCH-R1 antagonists. The results of structure-activity relationship studies led to the identification of compound 4c as a potent MCH-R1 antagonist (IC50 = 1 nM). This compound also has good metabolic stability, and favorable pharmacokinetic and brain penetration properties. However 4c was found to be potent inhibitor of the hERG potassium channel. 相似文献
6.
An analogue of human melanin-concentrating hormone (MCH) suitable for radioiodination was designed in which Tyr13 and Val19 of the natural peptide were replaced by phenylalanyl and tyrosyl residues: [Phe13, Tyr19] -MCH. The peptide was synthesized by the continuous-flow solid-phase methodology using Fmocstrategy and Polyhipe PA 500 and PEG-PS resins. The linear MCH peptides with either acetamidomethyl-protected or free cysteinyl residues were purified to homogeneity and cyclized by iodine oxidation, yielding the final product with the correct molecular weight of 2434.61. Radioiodination of the C-terminal tyrosine was carried out enzymatically using solid-phase bound glucose oxidase/lactoperoxidase, followed by purification on a reversed-phase mini-column and by high-pressure liquid chromatography. The resulting [125I]-[Phe13, Tyr19]-MCH tracer was the first radiolabelled MCH peptide suitable for radioreceptor assay: saturation binding analysis using mouse G4F-7 melanoma cells demonstrated the presence of 1090 MCH receptors per cell. The dissociation constant (KD ) was 1.18 × 10?10 M, indicating high-affinity MCH receptors on these cells. MCH receptors were also found in other cell lines such as mouse B16-F1 and G4F and human RE melanoma cells as well as in PC12 and COS-7 cells. Competition binding analyses with a number of other peptides such as α-MSH, neuropeptide Y, substance P and pituitary adenylate cyclase activating peptide, demonstrated that the binding to the MCH receptor is specific. Atrial natriuretic factor was found to be a weak competitor of MCH, indicating topological similarities between MCH and ANF when interacting with MCH receptors. 相似文献
7.
Dr. Nobuko Naito Yasumitsu Nakai Hiroshi Kawauchi Yujiro Hayashi 《Cell and tissue research》1985,242(1):41-48
Summary Melanin-concentrating hormone (MCH) has been purified from the chum salmon pituitary. Its complete amino acid sequence has recently been established. To identify the precise site of origin of MCH, immunostaining was performed in the brain and pituitary gland of the chum salmon and the rainbow trout using a highly sensitive and specific antiserum raised against synthetic MCH. In these two salmonid species immunoreactivity for MCH was detected in neurons and neuronal processes in the pars lateralis of the nucleus lateralis tuberis (NLT) in the basal hypothalamus. Numerous positive-staining processes of these MCH-neurons project to the pituitary gland, extending into neurohypophysial tissues within the pars intermedia and, to a lesser extent, into the pars distalis. No pituitary cells showed cross-reactivity. These results suggest that MCH is biosynthesized in the neurons of the NLT/pars lateralis and released in the neurohypophysis. On the other hand, prominent but less numerous MCH-positive processes could be traced to the pretectal area in which projection of both optic and pineal fibers has been detected using tracers. This observation suggests that the synthesis and/or release of MCH might be under the influence of either of these photosensory neurons. Moreover, the existence of an extrahypothalamic projection from MCH-positive neurons suggests that, in addition to melanin-concentration, MCH might be involved in other neuronal functions, perhaps serving as neuromodulator in the brain. 相似文献
8.
Melanophore death and disappearance produces color metamorphosis in the polychromatic Midas cichlid (Cichlasoma citrinellum) 总被引:1,自引:0,他引:1
Summary We describe the histological basis of color metamorphosis in the polychromatic Midas cichlid, Cichlasoma citrinellum. Eight percent of the individuals in a natural population transform from gray with black markings to orange, simultaneously losing their ability to adjust coloration in response to background and social context. This trait is inherited. Light- and electron microscopy revealed that this transformation is a two-step process. First, the melanophores die, then macrophage-like cells remove the debris. As a result of this initial process, the underlying xanthophores become visible, producing the orange coloration. A similar process may occur in individuals that further transform to white, or go directly from gray to white. 相似文献
9.
To date, there is a dearth of evidence to support functions for melanin-concentrating hormone (MCH) and melanin-concentrating hormone receptors (MCH-R) in mammalian skin physiology including pigmentation, inflammation and immune responses and skin cell proliferation. Much research is therefore still needed to define the roles of the hormone and its receptors in mammalian skin. This will be a crucial step to identifying pathogenic mechanisms that may involve the MCH/MCH-R system in the context of inflammatory and autoimmune skin diseases as well as skin cancers. The following review summarizes the studies which have been carried out to examine the expression and function of MCH and MCH-R in mammalian skin. Recent findings with regard to humoral immune responses to the MCH-R1 in patients with the skin depigmenting disease vitiligo are also discussed. 相似文献
10.
Cook LB Delorme-Axford EB Robinson K 《Biochemical and biophysical research communications》2008,375(4):592-595
The melanin-concentrating hormone receptor (MCHR) 1 is a G protein-coupled receptor involved in the regulation of appetite and energy expenditure in mammals. Here, we show that MCHR1 partitions to lipid rafts in stably expressing Chinese hamster ovary cells. In addition to co-fractionating with lipid rafts containing caveolin-1 on sucrose gradients, caveolin-1 was present in MCHR1 immunoprecipitates, suggesting that MCHR1 complexes with caveolae. The cholesterol-depleting drug methyl-β-cyclodextrin impaired MCH-mediated ERK signaling. These data suggest that a functional interaction between MCHR1 and caveolin-1 in lipid rafts exists and provide a basis for further biochemical studies to understand the significance on MCH-mediated signal transduction events. 相似文献
11.
《Journal of receptor and signal transduction research》2013,33(1):69-81
AbstractMelanin‐concentrating hormone (MCH) is a neuropeptide occurring in all vertebrates and some invertebrates and is now known to stimulate pigment aggregation in teleost melanophores and food‐intake in mammals. Whereas the two MCH receptor subtypes hitherto cloned, MCH‐R1 and MCH‐R2, are thought to mediate mainly the central effects of MCH, the MCH‐R on pigment cells has not yet been identified, although in some studies MCH‐R1 was reported to be expressed by human melanocytes and melanoma cells. Here we present data of a structure‐activity study in which 12 MCH peptides were tested on rat MCH‐R1 and mouse B16 melanoma cell MCH‐R, by comparing receptor binding affinities and biological activities. For receptor binding analysis with HEK‐293 cells expressing rat MCH‐R1 (SLC‐1), the radioligand was [125I]–[Tyr13]‐MCH with the natural sequence. For B16 cells (F1 and G4F sublines) expressing B16 MCH‐R, the analog [125I]–[D‐Phe13, Tyr19]‐MCH served as radioligand. The bioassay used for MCH‐R1 was intracellular Ca2+ mobilization quantified with the FLIPR instrument, whereas for B16 MCH‐R the signal determined was MAP kinase activation. Our data show that some of the peptides displayed a similar relative increase or decrase of potency in both cell types tested. For example, linear MCH with Ser residues at positions 7 and 16 was almost inactive whereas a slight increase in side‐chain hydrophilicity at residues 4 and 8, or truncation of MCH at the N‐terminus by two residues hardly changed binding affinity or bioactivity. On the other hand, salmonic MCH which also lacks the first two residues of the mammalian sequence but in addition has different residues at positions 4, 5, 9, and 18 exhibited a 5‐ to 10‐fold lower binding activity than MCH in both cell systems. A striking difference in ligand recognition between MCH‐R1 and B16 MCH‐R was however observed with modifications at position 13 of MCH: whereas L‐Phe13 in [Phe13, Tyr19]‐MCH was well tolerated by both MCH‐R1 and B16 MCH‐R, change of configuration to D‐Phe13 in [D‐Phe13, Tyr19]‐MCH or [D‐Phe13]‐MCH led to a complete loss of biological activity and to a 5‐ to 10‐fold lower binding activity with MCH‐R1. By contrast, the D‐Phe13 residue increased the affinity of [D‐Phe13, Tyr19]‐MCH to B16 MCH‐R about 10‐fold and elicited MAP kinase activation as observed with [Phe13, Tyr19]‐MCH or MCH. These data demonstrate that ligand recognition by B16 MCH‐R differs from that of MCH‐R1 in several respects, indicating that the B16 MCH‐R represents an MCH‐R subtype different from MCH‐R1. 相似文献
12.
Summary The change in distribution of melanophores from stage 28+ (uniform melanophore pattern) to stage 34 (banded melanophore pattern) and the participation of xanthophores in these changes has been investigated inTriturus alpestris embryos by studying the social behaviour of single cells. While melanophores are clearly visible from outside the embryo at stage 28+, xanthophores cannot be recognized from the outside until after stage 34. In ultrathin sections of stage 34 embryos, xanthophores are observed alternating with melanophores in a zonal distribution (Epperlein 1982). Using detached pieces of dorsolateral trunk skin, which retain their chromatophores after detachment, the entire distribution of melanophores and xanthophores can be visualized in a scanning electron microscope (SEM). In ambiguous cases (early stages), cells were reprocessed for transmission electron microscopy (TEM) and the presence of the characteristic pigment organelles was assessed. In addition, xanthophores were specifically identified by pteridine fluorescence with dilute ammonia. Pteridines were also identified chromatographically in skin homogenates. The combination of these methods allowed precise identification and quantitative determination of melanophores and xanthophores. Both cell types were present as codistributed, biochemically differentiated cells at stage 28+. Changes in the pattern up to stage 34 were due to the rearrangement at the epidermal-mesodermal interface of a relatively fixed number of melanophores which became preferentially localised at the dorsal somite edge and at the lateral plate mesoderm, and to the distribution of an increasing number of xanthophores to subepidermal locations in the dorsal fin and between the melanophore bands. Concomitant was an increase in the thickness of the epidermal basement membrane and a change in shape of chromatophores from elongate via stellate to rosette shaped, which may be correlated with a shift from migratory to sessile phases. 相似文献
13.
Melanin-concentrating hormone (MCH) is an important neuropeptide hormone involved in multiple physiological processes. Peptide derivatives of MCH have been developed as tools to aid research including potent radioligands, receptor selective agonists, and potent antagonists. These tools have been used to further understand the role of MCH in physiology, primarily in rodents. However, the tools could also help elucidate the role for MCHR1 and MCHR2 in mediating MCH signaling in higher species. 相似文献
14.
Takao Suzuki Minoru Kameda Makoto Ando Hiroshi Miyazoe Etsuko Sekino Satoru Ito Kouta Masutani Kaori Kamijo Akihiro Takezawa Minoru Moriya Masahiko Ito Junko Ito Kazuho Nakase Hiroko Matsushita Akane Ishihara Norihiro Takenaga Shigeru Tokita Akio Kanatani Nagaaki Sato Takehiro Fukami 《Bioorganic & medicinal chemistry letters》2009,19(18):5339-5345
Optimization of the lead 2a led to the identification of a novel diarylketoxime class of melanin-concentrating hormone 1 receptor (MCH-1R) antagonists. Our focus was directed toward improvement of hERG activity and metabolic stability. The representative derivative 4b showed potent and dose-dependent body weight reduction in diet-induced obese (DIO) C57BL/6J mice after oral administration. The synthesis and structure–activity relationships of the novel diarylketoxime MCH-1R antagonists are described. 相似文献
15.
Melanin-concentrating hormone (MCH) is a cyclic peptide which was originally discovered in fish to lighten skin color by affecting melanosomes aggregation. This peptide is highly conserved and also found in rodents whose gene is overexpressed upon fasting. However, the site of MCH action remained obscure until its receptor was discovered in 1999 as a G protein-coupled receptor. After this receptor structure was identified, the functional domains important for MCH-MCHR interaction were revealed. Moreover, the cloning of the MCH receptor led us to identify the in vivo sites of MCH action which suggested potential physiological functions of the MCH system. Furthermore, the MCH receptor identification allow for designing surrogate molecules which can block MCH activity. Studies using these molecules revealed various physiological functions of the MCH system not only in feeding but also in other physiological responses such as stress and emotion. This review will discuss how the MCH receptor was discovered and its impact on many studies investigating the MCH receptor's structure, signaling pathways, and expression pattern. 相似文献
16.
17.
Hans Henning Epperlein 《Development genes and evolution》1982,191(1):19-27
Summary The subepidermal distribution of xanthophores and melanophores is investigated in embryos ofTriturus alpestris with a uniform (stage 28+) and a banded melanophore pattern (stage 35/36). In ultrathin head and trunk sections from stage 35/36 embryos which externally show longitudinal dorsal and lateral melanophore bands in the trunk and less compact continuations of the dorsal bands in the head, xanthophores were discovered in addition to melanophores. Melanophores contain melanosomes while xanthophores which are not externally visible, are recognized by their pterinosomes. Both chromatophore cell types are mutually exclusively distributed on the epidermal basement membrane (bm). Mesenchymal cells seemed not to be able to replace them, except on the bm of the corneal epithelium where there were only mesenchymal cells. In head and trunk sections from stage 28+ embryos which externally show a distribution of uniformly scattered melanophores on the dorsolateral halves, melanophores were found on the dorsolateral neural crest migration route. No epidermal bm was present and xanthophores were undetectable. In ventrolateral and ventral portions of embryos of both stages no chromatophores occurred. This investigation defines the histological localization of melanophores and xanthophores in embryos with a typical uniform and banded melanophore arrangement; a subsequent study analyzes when xanthophores appear and how they arrange with melanophores in alternating zones. 相似文献
18.
Schlumberger SE Jäggin V Tanner H Eberle AN 《Biochemical and biophysical research communications》2002,298(1):54-59
Melanin-concentrating hormone (MCH), a cyclic nonadecapeptide, is predominantly expressed in mammalian neurons located in the zona incerta and lateral hypothalamus. Current interest in MCH relates to its role in the control of feeding behaviour. Two receptors for MCH were recently found: MCH-R(1) and MCH-R(2). We show here by RT-PCR analysis and immunofluorescence studies that the human neuroblastoma cell line Kelly expresses MCH and MCH-R(1) but not MCH-R(2). In competition assays using 125I-labelled MCH an inhibitory concentration 50% (IC(50)) of 76nM was determined for MCH, indicating a high affinity of Kelly cells for MCH. MCH induces mitogen-activated protein kinase (MAPK) phosphorylation in Kelly cells but no increase in the intracellular free Ca(2+) concentration. This suggests that MCH signals via Galpha(i)/Galpha(0) in these cells. The presence and functionality of MCH-R(1) renders this neuronal cell a very useful model for future structure-activity studies in a physiological environment mimicking the human brain for the evaluation of potential appetite-regulating drugs. 相似文献
19.
20.
The development of the hypothalamic melanin-concentrating hormone (MCH) system of the teleost Sparus auratus has been studied by immunocytochemistry using an anti-salmon MCH serum. Immunoreactive perikarya and fibers are found in embryos,
larvae, and juvenile specimens. In juveniles, most labeled neurons are present in the nucleus lateralis tuberis; some are
dispersed in the nucleus recessus lateralis and nucleus periventricularis posterior. From the nucleus lateralis tuberis, MCH
neurons project a conspicuous tract of fibers to the ventral hypothalamus; this penetrates the pituitary stalk and reaches
the neurohypophysis. Most fibers end close to the cells of the pars intermedia, and some reach the adenohypophysial rostral
pars distalis. Immunoreactive fibers can also be seen in extrahypophysial localizations, such as the preoptic region and the
nucleus sacci vasculosi. In embryos, MCH-immunoreactive neurons first appear at 36 h post-fertilization in the ventrolateral
margin of the developing hypothalamus. In larvae, at 4 days post-hatching, perikarya can be observed in the ventrolateral
border of the hypothalamus and in the mid-hypothalamus, near the ventricle. At 26 days post-hatching, MCH perikarya are restricted
to the nucleus lateralis tuberis. The neurohypophysis possesses MCH-immunoreactive fibers from the second day post-hatching.
The results indicate that MCH plays a role in larval development with respect to skin melanophores and cells that secrete
melanocyte-stimulating hormone.
Received: 4 April 1995 / Accepted: 17 July 1995 相似文献