首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified two genomic DNA fragments from the human pathogenic fungi, Candida albicans (CaVIG9) and Candida glabrata (CgVIG9) that encode GDP-mannose pyrophosphorylase, a key enzyme for protein glycosylation. The VIG9 homologues of CaVIG9 and CgVIG9 complement an identified protein glycosylation-defective mutation, vig9, of Saccharomyces cerevisiae. The nucleotide sequences of the ORFs, which are 83 and 90% identical to that of the ScVIG9 protein, respectively, showed a predicted gene product homologous to S. cerevisiae GDP-mannose pyrophosphorylase. We examined the enzyme activity of a glutathione S-transferase fusion of each VIG9 gene to synthesize GDP mannose in the cell extracts of a heterologous Escherichia coli expression system. We also developed a method for detecting the enzyme activity using a non-radioactive substrate that would be applicable to high throughput screening.  相似文献   

2.
3.
Candida albicans is an opportunistic oral pathogen. The flexibility of this microorganism in response to environmental changes includes the expression of a cyanide-resistant alternative respiratory pathway. In the present study, we characterized both conventional and alternative respiratory pathways and determined their ADP/O ratios, inhibitor sensitivity profiles and the impact of the utilization of either pathway on susceptibility to commonly used antimycotics. Oxygen consumption by isolated mitochondria using NADH or malate/pyruvate as respiratory substrates indicated that C. albicans cells express both cytoplasmic and matrix NADH-ubiquinone oxidoreductase activities. The ADP/O ratio was higher for malate/pyruvate (2.2±0.1), which generate NADH in the matrix, than for externally added NADH (1.4±0.2). In addition, malate/pyruvate respiration was rotenone-sensitive, and an enzyme activity assay further confirmed that C. albicans cells express Complex I activity. Cells grown in the presence of antimycin A expressed the cyanide-insensitive respiratory pathway. Determination of the respiratory control ratio (RCR) and ADP/O ratios of mitochondria from these cells indicated that electron transport from ubiquinone to oxygen via the alternative respiratory pathway was not coupled to ATP production; however, an ADP/O ratio of 0.8 was found for substrates that donate electrons at Complex I. Comparison of antifungal susceptibility of C. albicans cells respiring via the conventional or alternative respiratory pathways showed that respiration via the alternative pathway does not reduce the susceptibility of cells to a series of clinically employed antimycotics (using Fungitest®), or to the naturally occurring human salivary antifungal peptide, histatin 5.  相似文献   

4.
Summary Three cellulose-negative (Cel-) mutants of Acetobacter xylinum strain ATCC 23768 were complemented by a cloned 2.8 kb DNA fragment from the wild type. Biochemical analysis of the mutants showed that they were deficient in the enzyme uridine 5-diphosphoglucose (UDPG) pyrophosphorylase. The analysis also showed that the mutants could synthesize (1-4)-glucan in vitro from UDPG, but not in vivo from glucose. This result was expected, since UDPG is known to be the precursor for cellulose synthesis in A. xylinum. In order to analyze the function of the cloned gene in more detail, its biological activity in Escherichia coli was studied. These experiments showed that the cloned fragment could be used to complement an E. coli mutant deficient in the structural gene for UDPG pyrophosphorylase. It is therefore clear that the cloned fragment must contain this gene from A. xylinum. This is to our knowledge the first example of the cloning of a gene with a known function in cellulose biosynthesis from any organism, and we suggest the gene be designated celA.  相似文献   

5.
6.
Ess1 is a peptidyl prolyl cis/trans isomerase that is required for virulence of the pathogenic fungi Candida albicans and Cryptococcus neoformans. The enzyme isomerizes the phospho-Ser-Pro linkages in the C-terminal domain of RNA polymerase II. Its human homolog, Pin1, has been implicated in a wide range of human diseases, including cancer and Alzheimer's disease. Crystallographic and NMR studies have demonstrated that the sequence linking the catalytic isomerase domain and the substrate binding WW domain of Pin1 is unstructured and that the two domains are only loosely associated in the absence of the substrate. In contrast, the crystal structure of C. albicans Ess1 revealed a highly ordered linker that contains a three turn α-helix and extensive association between the two tightly juxtaposed domains. In part to address the concern that the marked differences in the domain interactions for the human and fungal structures might reflect crystal lattice effects, NMR chemical shift analysis and 15N relaxation measurements have been employed to confirm that the linker of the fungal protein is highly ordered in solution. With the exception of two loops within the active site of the isomerase domain, the local backbone geometry observed in the crystal structure appears to be well preserved throughout the protein chain. The marked differences in interdomain interactions and linker flexibility between the human and fungal enzymes provide a structural basis for therapeutic targeting of the fungal enzymes.  相似文献   

7.
In this study, the antifungal activity and mode of action(s) of hibicuslide C derived from Abutilon theophrasti were investigated. Antifungal susceptibility testing showed that hibicuslide C possessed potent activities toward various fungal strains and less hemolytic activity than amphotericin B. To understand the antifungal mechanism(s) of hibicuslide C in Candida albicans, flow cytometric analysis with propidium iodide was done. The results showed that hibicuslide C perturbed the plasma membrane of the C. albicans. The analysis of the transmembrane electrical potential with 3,3′-dipropylthiacarbocyanine iodide [DiSC3(5)] indicated that hibicuslide C induced membrane depolarization. Furthermore, model membrane studies were performed with calcein encapsulating large unilamellar vesicles (LUVs) and FITC–dextran (FD) loaded LUVs. These results demonstrated that the antifungal effects of hibicuslide C on the fungal plasma membrane were through the formation of pores with radii between 2.3 nm and 3.3 nm. Finally, in three dimensional flow cytometric contour plots, a reduced cell sizes by the pore-forming action of hibicuslide C were observed. Therefore, the present study suggests that hibicuslide C exerts its antifungal effect by membrane-active mechanism.  相似文献   

8.
The molecular basis of polyspecificity of Mdr1p, a major drug/H+ antiporter of Candida albicans, is not elucidated. We have probed the nature of the drug-binding pocket by performing systematic mutagenesis of the 12 transmembrane segments. Replacement of the 252 amino acid residues with alanine or glycine yielded 2/3 neutral mutations while 1/3 led to the complete or selective loss of resistance to drugs or substrates transported by the pump. Using the GlpT-based 3D–model of Mdr1p, we roughly categorized these critical residues depending on their type and localization, 1°/ main structural impact (“S” group), 2°/ exposure to the lipid interface (“L” group), 3°/ buried but not facing the main central pocket, inferred as critical for the overall H+/drug antiport mechanism (“M” group) and finally 4°/ buried and facing the main central pocket (“B” group). Among “B” category, 13 residues were essential for the large majority of drugs/substrates, while 5 residues were much substrate-specific, suggesting a role in governing polyspecificity (P group). 3D superposition of the substrate-specific MFS Glut1 and XylE with the MDR substrate-polyspecific MdfA and Mdr1p revealed that the B group forms a common substrate interaction core while the P group is only found in the 2 MDR MFS transporters, distributed into 3 areas around the B core. This specific pattern has let us to propose that the structural basis for polyspecificity of MDR MFS transporters is the extended capacity brought by residues located at the periphery of a binding core to accomodate compounds differing in size and type.  相似文献   

9.
10.
使用RACE技术克隆黄瓜(Cucumis sativus L.)腋芽生长抑制基因并进行生物信息学和半定量RT-PCR分析。结果表明:从黄瓜腋芽中成功克隆了拟南芥(Arabidopsis thaliana)AtCCD7/MAX3同源基因,命名为CsCCD7(GenBank登录号:HQ005419);CsCCD7基因序列含有1665 bp的开放阅读框(ORF),编码554个氨基酸;编码的蛋白质命名为CsCCD7,隶属于CCD蛋白家族成员,蛋白质的二级结构和三级结构预测显示其富含β折叠和β转角以及无规卷曲,是不稳定蛋白。CsCCD7在根中的表达量最高,在多分枝、矮化黄瓜D0462中的表达量最低,这说明CsCCD7蛋白可能参与调控植物分枝信号的转导及分枝相关基因的表达调控。  相似文献   

11.
Candida albicans cells have low levels of ergosterol when grown in ascorbic acid-supplemented media. When cells are grown in hydroquinone-supplemented media, the ergosterol levels became higher as compared to normal cells. The uptake of lysine, glycine, glutamic acid, proline, methionine and serine is reduced in hydroquinone-supplemented cells. In contrast to hydroquinone-supplemented cells, the rate and level of accumulation of these amino acids are higher in ascorbic acid-supplemented cells. Nystatin-resistant isolates of C. albicans with low ergosterol contents also exhibit an increased rate and level of accumulation of these amino acids. The uptake of phenylalanine and leucine remained unaffected by such a change in ergosterol levels brought about by different supplementation of the media. The results demonstrate a correlation between ergosterol levels and amino acids uptake. Contrary to various reports, the rate of K+ efflux does not seem to correlate with the amino acid uptake in C. albicans cells.  相似文献   

12.
We show that the antifungal plant defensin Raphanus sativus antifungal protein 2 (RsAFP2) from radish induces apoptosis and concomitantly triggers activation of caspases or caspase-like proteases in the human pathogen Candida albicans. Furthermore, we demonstrate that deletion of C. albicans metacaspase 1, encoding the only reported (putative) caspase in C. albicans, significantly affects caspase activation by the apoptotic stimulus acetic acid, but not by RsAFP2. To our knowledge, this is the first report on the induction of apoptosis with concomitant caspase activation by a defensin in this pathogen. Moreover, our data point to the existence of at least two different types of caspases or caspase-like proteases in C. albicans.  相似文献   

13.
Summary Molecular methods for directed mutagenesis in Candida albicans have relied on a combination of gene disruption by transformation to inactivate one allele and UV-induced mitotic recombination or point mutation to produce lesions in the second allele. An alternate method which uses two sequential gene disruptions was developed and used to construct a C. albicans mutant defective in a gene essential for synthesizing tetrapyrrole (uroporphyrinogen I synthase). The Candida gene was cloned from a random library by complementation of the hem3 mutation in Saccharomyces cerevisiae. The complementing region was limited to a 2.0 kb fragment by subcloning and a BglII site was determined to be within an essential region. Linear fragments containing either the Candida URA3 or LEU2 gene inserted into the BglII site were used to disrupt both alleles of a leu2, ura3 mutant by sequential transformation. Ura+, Leu+ heme-requiring strains were recovered and identified as hem3 mutants by Southern hybridization, transformation to heme independence by the cloned gene, and enzyme assays.  相似文献   

14.
15.
Candida glabrata is the second most common source of Candida infections in humans. In this pathogen, the maintenance of cell wall integrity (CWI) frequently precludes effective pharmacological treatment by antifungal agents. In numerous fungi, cell wall modulation is reported to be controlled by endoplasmic reticulum (ER) stress, but how the latter affects CWI maintenance in C. glabrata is not clearly understood. Here, we characterized a C. glabrata strain harboring a mutation in the CNE1 gene, which encodes a molecular chaperone associated with nascent glycoprotein maturation in the ER. Disruption of cne1 induced ER stress and caused changes in the normal cell wall structure, specifically a reduction in the β-1,6-glucan content and accumulation of chitin. Conversely, a treatment with the typical ER stress inducer tunicamycin up-regulated the production of cell wall chitin but did not affect β-1,6-glucan content. Our results also indicated that C. glabrata features a uniquely evolved ER stress-mediated CWI pathway, which differs from that in the closely related species Saccharomyces cerevisiae. Furthermore, we demonstrated that ER stress-mediated CWI pathway in C. glabrata is also induced by the disruption of other genes encoding proteins that function in a correlated manner in the quality control of N-linked glycoproteins in the ER. These results suggest that calcineurin and ER quality control system act as a platform for maintaining CWI in C. glabrata.  相似文献   

16.
17.
3-Aminopropyl glycosides of 3,6-branched penta- and hexamannoside fragments of the cell wall mannan from Candida albicans, corresponding to the antigenic factor 4, have been synthesized. Subsequent coupling of both oligosaccharides with BSA using the squarate procedure provided corresponding neoglycoconjugates.  相似文献   

18.
Nucleotide binding domains (NBDs) of the multidrug transporter of Candida albicans, CaCdr1p, possess unique divergent amino acids in their conserved motifs. For example, NBD1 (N-terminal-NBD) possesses conserved signature motifs, while the same motif is divergent in NBD2 (C-terminal-NBD). In this study, we have evaluated the contribution of these conserved and divergent signature motifs of CaCdr1p in ATP catalysis and drug transport. By employing site-directed mutagenesis, we made three categories of mutant variants. These included mutants where all the signature motif residues were replaced with either alanines or mutants with exchanged equipositional residues to mimic the conservancy and degeneracy in opposite domain. In addition, a set of mutants where signature motifs were swapped to have variants with either both the conserved or degenerated entire signature motif. We observed that conserved and equipositional residues of NBD1 and NBD2 and swapped signature motif mutants showed high susceptibility to all the tested drugs with simultaneous abrogation in ATPase and R6G efflux activities. However, some of the mutants displayed a selective increase in susceptibility to the drugs. Notably, none of the mutant variants and WT-CaCdr1p showed any difference in drug and nucleotide binding. Our mutational analyses show not only that certain conserved residues of NBD1 signature sequence (S304, G306, and E307) are important in ATP hydrolysis and R6G efflux but also that a few divergent residues (N1002 and E1004) of NBD2 signature motif have evolved to be functionally relevant and are not interchangeable. Taken together, our data suggest that the signature motifs of CaCdr1p, whether it is divergent or conserved, are nonexchangeable and are functionally critical for ATP hydrolysis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号