首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degradation of xylan requires the action of glycanases and esterases which hydrolyse, in a synergistic fashion, the main chain and the different substituents which decorate its structure. Among the xylanolytic enzymes acting on side-chains are the α-glucuronidases (AguA) (E.C. 3.2.1.139) which release methyl glucuronic acid residues. These are the least studies among the xylanolytic enzymes. In this work, the gene and cDNA of an α-glucuronidase from a newly isolated strain of Aspergillus fumigatus have been sequenced, and the gene has been expressed in Pichia pastoris. The gene is 2523 bp long, has no introns and codes for a protein of 840 amino acid residues including a putative signal peptide of 19 residues. The mature protein has a calculated molecular weight of 91 725 and shows 99 % identity with a putative α-glucuronidase from A. fumigatus A1163. The recombinant enzyme was expressed with a histidine tag and was purified to near homogeneity with a nickel nitriloacetic acid (Ni-NTA) column. The purified enzyme has a molecular weight near 100 000. It is inactive using birchwood glucuronoxylan as substrate. Activity is observed in the presence of xylooligosaccharides generated from this substrate by a family 10 endoxylanase and when a mixture of aldouronic acids are used as substrates. If, instead, family 11 endoxylanase is used to generate oligosaccharides, no activity is detected, indicating a different specificity in the cleavage of xylan by family 10 and 11 endoxylanases. Enzyme activity is optimal at 37 °C and pH 4.5–5. The enzyme binds cellulose, thus it likely possesses a carbohydrate binding module. Based on its properties and sequence similarities the catalytic module of the newly described α-glucuronidase can be classified in family 67 of the glycosyl hydrolases. The recombinant enzyme may be useful for biotechnological applications of α-glucuronidases.  相似文献   

2.
When entrapped into liposomes composed of phosphatidylcholine and other lipids, β-galactosidase (β-d-galactoside galactohydrolase, EC 3.2.1.23) purified from Aspergillus oryzae could cleave the β-galactosidic bond of the terminal galactose of galactocerebroside and GM1-ganglioside (II3NeuAc-GgOse4Cer, galactosyl-N-acetylgalactosaminyl-(N-acetylneuraminosyl)-galactosylglucosylceramide), while the free enzyme could not. The products of the hydrolysis of galactocerebroside were found to be β-galactose and ceramide, which was confirmed by using a fluorescent analog of galactocerebroside, 1-O-galactosyl-2-N-(1-dimethylaminonaphthalene-5-sulfonyl)-sphingosine, as substrate. The formation of GM2-ganglioside (II3NeuAc-GgOse3Cer, N-acetylgalactosaminyl-(N-acetylneuraminosyl)-galactosylglucosylceramide) by the hydrolysis of GM1-ganglioside was also demonstrated. The lipid composition of the liposomes influenced the amount of the enzyme entrapped and the activity of the trapped enzyme. A large amount of the enzyme was entrapped into the liposomes composed of phosphatidylcholine-cholesterol-stearoylamine (molar ratio, 7:2:1). The enzyme trapped in the liposomes and that in those of phosphatidylcholine-cholesterol-sulfatide (molar ratio, 7:2:1) had higher activity on galactocerebroside and GM1-ganglioside than that in other liposomes. The activity of β-galactosidase trapped in liposomes was increased in the presence of detergent, while that of the free enzyme was not changed.By a similar procedure to introduce enzymes into hydrophobic environments, enzymes other than β-galactosidase might come to possess different substrate specificities.  相似文献   

3.
A new fungal strain that was isolated from old sweet soy sauce was identified, based on subsequent microscopic studies and analyses of rRNA18S gene sequence, intergenic region rRNA 18S-23S, and aflatoxins production tests, as an Aspergillus oryzae strain. The latter was noted to produce two extracellular α-amylases, namely AmyA and AmyB. The monitoring of alpha-amylase production in the presence and absence of various protease inhibitors indicated that AmyB could be formed from the proteolysis of AmyA. The enzymes were purified to homogeneity through fractional acetone precipitation, size exclusion, and anion exchange chromatography. The molecular masses estimated for AmyA and AmyB by SDS-PAGE were 50 and 42 kDa, respectively. The NH2-terminal of the purified proteins showed the same amino acid sequences. Further biochemical characterization assays revealed that both enzymes attained maximal activity at pH 5.6 and 50 °C. They were activated and stabilized by Ca2+ and were noted to produce maltose and maltotriose as major starch hydrolysis end products. Overall, the findings of the present study indicate that both AmyA and AmyB exhibit a number of promising properties that make them potential strong candidates for application as additives in the bread making industry.  相似文献   

4.
α-Glucuronidase A from Aspergillus tubingensis was found to be capable of liberating 4-O-methyl-D-glucuronic acid (MeGlcA) only from those beechwood glucuronoxylan fragments in which the acid is attached to the non-reducing terminal xylopyranosyl residue. Reduced aldotetrauronic acid, 4-O-methyl-D-glucuronosyl-α-1,2-D-xylopyranosyl-β-1,4-xylopyranosyl-β-1,4-xylitol, was found to be a suitable substrate to follow the stereochemical course of the hydrolytic reaction catalyzed by the purified enzyme. The configuration of the liberated MeGlcA was followed in a D2O reaction mixture by 1H-NMR spectroscopy. It was unambiguously established that MeGlcA was released from the substrate as its β-anomer from which the α-anomer was formed on mutarotation. This result represents the first experimental evidence for the inverting character of a microbial α-glucuronidase, a member of glycosyl hydrolase family 67 (EC 3.1.1.139).  相似文献   

5.
Previous studies have shown that both αA- and αB-crystallins bind Cu2+, suppress the formation of Cu2+-mediated active oxygen species, and protect ascorbic acid from oxidation by Cu2+. αA- and αB-crystallins are small heat shock proteins with molecular chaperone activity. In this study we show that the mini-αA-crystallin, a peptide consisting of residues 71-88 of αA-crystallin, prevents copper-induced oxidation of ascorbic acid. Evaluation of binding of copper to mini-αA-crystallin showed that each molecule of mini-αA-crystallin binds one copper molecule. Isothermal titration calorimetry and nanospray mass spectrometry revealed dissociation constants of 10.72 and 9.9 μM, respectively. 1,1'-Bis(4-anilino)naphthalene-5,5'-disulfonic acid interaction with mini-αA-crystallin was reduced after binding of Cu2+, suggesting that the same amino acids interact with these two ligands. Circular dichroism spectrometry showed that copper binding to mini-αA-crystallin peptide affects its secondary structure. Substitution of the His residue in mini-αA-crystallin with Ala abolished the redox-suppression activity of the peptide. During the Cu2+-induced ascorbic acid oxidation assay, a deletion mutant, αAΔ70-77, showed about 75% loss of ascorbic acid protection compared to the wild-type αA-crystallin. This difference indicates that the 70-77 region is the primary Cu2+-binding site(s) in human native full-size αA-crystallin. The role of the chaperone site in Cu2+ binding in native αA-crystallin was confirmed by the significant loss of chaperone activity by the peptide after Cu2+ binding.  相似文献   

6.
An α-amylase produced by Paecilomyces variotii was purified by DEAE-cellulose ion exchange chromatography, followed by Sephadex G-100 gel filtration and electroelution. The α-amylase showed a molecular mass of 75 kDa (SDS-PAGE) and pI value of 4.5. Temperature and pH optima were 60 °C and 4.0, respectively. The enzyme was stable for 1 h at 55 °C, showing a t50 of 53 min at 60 °C. Starch protected the enzyme against thermal inactivation. The α-amylase was more stable in alkaline pH. It was activated mainly by calcium and cobalt, and it presented as a glycoprotein with 23% carbohydrate content. The enzyme preferentially hydrolyzed starch and, to a lower extent, amylose and amylopectin. The Km of α-amylase on Reagen® and Sigma® starches were 4.3 and 6.2 mg/mL, respectively. The products of starch hydrolysis analyzed by TLC were oligosaccharides such as maltose and maltotriose. The partial amino acid sequence of the enzyme presented similarity to α-amylases from Bacillus sp. These results confirmed that the studied enzyme was an α-amylase ((1→4)-α-glucan glucanohydrolase).  相似文献   

7.
Despite their well recognized importance in pathogenesis of Entamoeba histolytica there are few studies dealing with the assembly and secretion of glycoproteins that participate in the adhesion to target cells and in the dissemination of the parasite in infected tissues. Some of these studies refer to the identification and, in some cases, the characterization of glycosyl transferases and glycosidases involved in the biosynthesis of these macromolecules as well as to compartments involved in the amoeba dolichol-linked glycosylation pathway. While an N-glycan trimming α-mannosidase has been demonstrated in E. histolytica, little is known on its cellular distribution and properties. Here we describe the presence and partial biochemical characterization of soluble and MMF-associated forms of α-mannosidase and the separation of at least three internal membrane structures enriched with this glycosidase. Results are discussed in terms of the possible identity of α-mannosidase activity and the potential precursor-product relationship between the two enzyme forms.  相似文献   

8.
Although core α1,6-fucosylation is commonly observed in N-glycans of both vertebrates and invertebrates, the responsible enzyme, α1,6-fucosyltransferase, has been much less characterized in invertebrates compared to vertebrates. To investigate the functions of α1,6-fucosyltransferase in insects, we cloned the cDNA for the α1,6-fucosyltransferase from Bombyx mori (Bmα1,6FucT) and characterized the recombinant enzyme prepared using insect cell lines. The coding region of Bmα1,6FucT consists of 1737 bp that code for 578 amino acids of the deduced amino acid sequence, showing significant similarity to other α1,6-fucosyltransferases. Enzyme activity assays demonstrated that Bmα1,6FucT is enzymatically active in spite of being less active compared to the human enzyme. The findings also indicate that Bmα1,6FucT, unlike human enzyme, is N-glycosylated and forms a disulfide-bonded homodimer. These findings contribute to a better understanding of roles of α1,6-fucosylation in invertebrates and also to the development of the more efficient engineering of N-glycosylation of recombinant glycoproteins in insect cells.  相似文献   

9.
《Plant science》1988,54(1):83-91
Lactose-adapted cells were obtained from Datura innoxia sucrose growing calli cultures and from Vinca minor glucose growing calli cultures. Lactose adaptation process points out the homogeneity of the cell population towards lactose uptake in V. minor cultures while it reveals the presence of heterogeneous population in D. innoxia cultures.In both species, lactose hydrolysis was only occurring in the cells; no lactase activity was detected in the culture medium. An intermittent lactase activity was determined in a cell-free extract during the culture period. Lactase activity was detected in Vinca glucose grown cells as well in Datura lactose-adapted cells cultured in absence of lactose; so lactase is a constitutive enzyme. Galactose liberated during lactose hydrolysis was not toxic for thecells; it was released into the culture medium and not metabolized in Vinca cultures while it was metabolized in Datura cultures at the end of the culture period.  相似文献   

10.
Xyloglucan is a major structural polysaccharide of the primary (growing) cell wall of higher plants. It consists of a cellulosic backbone (beta-1,4-linked glucosyl residues) that is frequently substituted with side chains. This report describes Aspergillus nidulans strain A773 recombinant secretion of a dimeric xyloglucan-specific endo-β-1,4-glucanohydrolase (XegA) cloned from Aspergillus niveus. The ORF of the A. niveus xegA gene is comprised of 714 nucleotides, and encodes a 238 amino acid protein with a calculated molecular weight of 23.5 kDa and isoelectric point of 4.38. The optimal pH and temperature were 6.0 and 60 °C, respectively. XegA generated a xyloglucan-oligosaccharides (XGOs) pattern similar to that observed for cellulases from family GH12, i.e., demonstrating that its mode of action includes hydrolysis of the glycosidic linkages between glucosyl residues that are not branched with xylose. In contrast to commercial lichenase, mixed linkage beta-glucan (lichenan) was not digested by XegA, indicating that the enzyme did not cleave glucan β-1,3 or β-1,6 bonds. The far-UV CD spectrum of the purified enzyme indicated a protein rich in β-sheet structures as expected for GH12 xyloglucanases. Thermal unfolding studies displayed two transitions with mid-point temperatures of 51.3 °C and 81.3 °C respectively, and dynamic light scattering studies indicated that the first transition involves a change in oligomeric state from a dimeric to a monomeric form. Since the enzyme is a predominantly a monomer at 60 °C, the enzymatic assays demonstrated that XegA is more active in its monomeric state.  相似文献   

11.
The cgt gene encoding α-cyclodextrin glycosyltransferase (α-CGTase) from Paenibacillus macerans strain JFB05-01 was expressed in Escherichia coli as a C-terminal His-tagged protein. After 90 h of induction, the activity of α-CGTase in the culture medium reached 22.5 U/mL, which was approximately 42-fold higher than that from the parent strain. The recombinant α-CGTase was purified to homogeneity through either nickel affinity chromatography or a combination of ion-exchange and hydrophobic interaction chromatography. Then, the purified enzyme was characterized in detail with respect to its cyclization activity. It is a monomer in solution. Its optimum reaction temperature is 45 °C, and half-lives are approximately 8 h at 40 °C, 1.25 h at 45 °C and 0.5 h at 50 °C. The recombinant α-CGTase has an optimum pH of 5.5 with broad pH stability between pH 6 and 9.5. It is activated by Ca2+, Ba2+, and Zn2+ in a concentration-dependent manner, while it is dramatically inhibited by Hg2+. The kinetics of the α-CGTase-catalyzed cyclization reaction could be fairly well described by the Hill equation.  相似文献   

12.
13.
α-Glucosidases or maltases (EC 3.2.1.20) were purified to electrophoretic homogeneity from a respective strain of Sacchromyces cerevisiae which carries a single MAL gene, either MALα, MALβ or MALγ, using gluconate-Sepharose affinity chromography and isoelectrofocusing. Of these maltases, two types of maltase were obtained from the MALγ strain, the pI values of which were 5.6 and 5.9. From the MALα and MALβ strain was obtained only one type of maltase with the pI at 5.6 which was identical to one of the maltases from the MALγ strain. These four maltases possessed the same properties, except for pI. They were monomers with molecular weights of between 66 000 and 67 000. With regard to the substrate specificity, they hydrolyzed maltose and sucrose exclusively but not α-methulglucoside nor maltooligosaccharide. They did not differ in immunological properties.  相似文献   

14.
15.
16.
The development of an effective vaccine against the schistosome is thought to be the most desirable means to control schistosomiasis, even though there is an effective means of chemotherapy with praziquantel. A full-length cDNA encoding the Schistosoma japonicum proteasome subunit alpha type 5 protein (SjPSMA5) was first isolated from 18-day-schistosomulum cDNAs. The cDNA had an open reading frame (ORF) of 747 bp and encoded 248 amino acids. Real-time quantitative RT-PCR analysis revealed that SjPSMA5 is up-regulated in 18-day and 32-day schistosomes, and the level of expression in male is around fourfold higher than that in female worms at 42 days. The SjPSMA5 was subcloned into pET28a(+) and expressed as inclusion bodies in Escherichia coli BL21 (DE3) cells. Western blotting showed that the recombinant SjPSMA5 (rSjPSMA5) was immunogenic. After immunization of BALB/c mice with rSjPSMA5, reductions of 23.29% and 35.24% were obtained in the numbers of worms and eggs in the liver, respectively. The levels of specific IgG antibodies and cells were significantly higher (P < 0.01) in the group vaccinated with rSjPSMA5 combined with Seppic 206 adjuvant than in the other groups, as detected by enzyme linked immunosorbent assay (ELISA) and flow cytometry. The study suggested that rSjPSMA5 induced partial immunoprotection against S. japonicum in BALB/c mice, and it could be a potential vaccine candidate against schistosomiasis.  相似文献   

17.
As found during continuous cultivation ofBacillus licheniformis on a semisynthetic medium (glucose or maltose as C source), the specific rate of α-amylase production is proportional to growth rate but is repressed by higher substrate concentrations. Besides glucose or maltose, peptone was also used as an alternative carbon source during cultivation. The specific rate of production of the enzyme on maltose is half that found with glucose.  相似文献   

18.
α-Glucosidase from Aspergillus niger is an enzyme that catalyzes hydrolysis of α-1,4 linkages and transglucosylation to form α-1,6 linkages. In this study, an analytical method of oligosaccharides by nuclear magnetic resonance (NMR) was used to provide quantitative estimation of the fractions of each sugar unit and was applied to characterize the α-glucosidase reaction. Our data indicated that α-glucosidase reacts with the nonreducing end of oligosaccharides to form an α-1,6 linkage, and then a sugar unit with two α-1,6 linkages is gradually produced. Data from mass spectrometry suggested that the sugar unit with two α-1,6 linkages originates mainly from a 3mer and/or 4mer when oligosaccharides are used as substrates.  相似文献   

19.
Venoms of Colubridae snakes are a rich source of novel compounds, which may have applications in medicine and biochemistry. In the present study, we describe the purification and characterization of a metalloproteinase (patagonfibrase), the first protein to be isolated from Philodryas patagoniensis (Colubridae) snake venom. Patagonfibrase is a single-chain protein, showing a molecular mass of 53,224 Da and an acidic isoelectric point (5.8). It hydrolyzed selectively the Aα-chain of fibrinogen and when incubated with fibrinogen or plasma, the thrombin clotting time was prolonged. Prominent hemorrhage developed in mouse skin after intradermal injection of patagonfibrase. When administered into mouse gastrocnemius muscle, it induced local hemorrhage and necrosis, and systemic bleeding in lungs. Patagonfibrase showed proteolytic activity toward azocasein, which was enhanced by Ca2+ and inhibited by Zn2+, cysteine, dithiothreitol and Na2EDTA. Patagonfibrase impaired platelet aggregation induced by collagen and ADP. Thus, patagonfibrase may play a key role in the pathogenesis of disturbances that occur in P. patagoniensis envenomation, and may be used as a biological tool to explore many facets of hemostasis.  相似文献   

20.
A soil isolate of Bacillus stearothermophilus was found to synthesize thermostable alpha-amylase. The enzyme was purified to homogeneity by ammonium sulfate fractionation and IECC on DEAE-cellulose column. The purified enzyme was considered to be a monomeric protein with a molar mass of 64 kDa, as determined by SDS-PAGE. The enzyme showed a wide range of pH tolerance and maximum activity at pH 7.0. The temperature tolerance was up to 100 degrees C with more than 90% catalytic activity; the maximum activity was observed at 50 degrees C. Divalent metal ions exhibited inhibitory effect on the enzyme activity. However, proteinase inhibitor did not react positively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号