首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acid-soil stress in 12 sorghum (Sorghum bicolor (L.) Moench) genotypes was attributed mainly to aluminium (Al) toxicity. Root damage and magnesium (Mg) deficiency are two independent aspects of plant sensitivity to Al, either in acid soil or in nutrient solution. At moderate soil acidity, Mg deficiency dominantly limited growth whilst at high acidity root damage overruled the effect of Mg deficiency on the growth response. In nutrient solutions containing Al, increased Mg supply improved both root development and Mg nutrition of plants, whereas increased calcium (Ca) supply, or nutrition with ammonium (NH4) instead of nitrate (NO3), alleviated root damage but amplified Mg deficiency. At lowered pH the syndrome of Al toxicity was more profound. The implications of Mg-Al interactions, root damage, Mg supply and genotype selection are elucidated.  相似文献   

2.
Aluminum resistance of cowpea as affected by phosphorus-deficiency stress   总被引:2,自引:0,他引:2  
Plants growing in acid soils suffer both phosphorus (P) deficiency and aluminum (Al) toxicity stresses. Selection of genotypes for adaptation to either P deficiency or Al toxicity has sometimes been unsuccessful because these two soil factors often interact. Two experiments were conducted to evaluate eight cowpea genotypes for Al resistance and to study the combined effect of P deficiency and Al toxicity stress on growth, P uptake, and organic acid anion exudation of two genotypes of contrasting Al resistance selected from the first experiment. Relative root inhibition by 30 μM Al ranged from 14% to 60% and differed significantly among the genotypes. Al significantly induced callose formation, particularly in Al-sensitive genotypes. P accumulation was significantly reduced (28% and 95%) by Al application for both the Al-resistant and the Al-sensitive genotypes. Al supply significantly enhanced malate release of root apices of both genotypes. However, the exudation rate was significantly higher in the Al-resistant genotype. P deprivation induced an enhanced malate exudation in the presence of Al only in the Al-resistant genotype IT89KD-391. Citrate exudation rate of the root apices was lower than malate exudation by a factor of about 10, and was primarily enhanced by P deficiency in both genotypes. Al treatment further enhanced citrate exudation in P-sufficient, but not in P-deficient plants. The level of citrate exudation was consistently higher in the Al-resistant genotype IT89KD-391 particularly in presence of Al.It is concluded that the Al-resistant genotype is better adapted to acid Al-toxic and P-deficient soils than the Al-sensitive genotype since both malate and citrate exudation were more enhanced by combined Al and P-deficiency stresses.  相似文献   

3.
The contribution of Mg deficiency to Al stress in twelve different sorghum (Sorghum bicolor (L.) Moench) genotypes was investigated in nutrient solution culture under conditions of low Mg supply (between 50 and 1000 M) at two pH values. At pH 4.2, 30 M Al strongly inhibited Mg uptake. When dry matter yield was plotted as a function of the plant Mg concentration, similar response curves were obtained in the absence and the presence of Al with three genotypes. With many other genotypes dry matter yields of the control (without Al treatment) and Al-stressed plants were remarkably different at similar internal Mg concentrations, suggesting that growth had been suppressed not by Mg deficiency but by another factor, i.e. Al-induced root damage. At pH 4.8, 30 M Al hardly induced root damage but reduced Mg uptake and Al-induced Mg deficiency could almost completely account for the growth reaction of all genotypes. Therefore, at this pH the efficiency of uptake or use of Mg in different genotypes was the basis of their respective susceptibility to Al toxicity. When specific root length surpassed a certain critical range below 80–100 m per g dry root, growth control by Al-induced Mg deficiency was nearly abolished. The pH and Al concentration where this range was reached depended on the Al sensitivity of the genotypes.  相似文献   

4.
The effects of lime and P on the chemical composition of the tropical legume Leucaena leucocephala were studied in a controlled climate laboratory experiment using 4 (Koronivia, Nadroloulou, Batiri, and Seqaqa) highly-weathered, acid soils from Fiji. For all soils, changes in the concentration of P in the Leucaena tops followed trends similar to the yield response curve, i.e., the concentration of P was highest at the soil pH at which maximum growth occurred. The concentration of Al in plant tops increased on either side of the pH of maximum growth, but Al uptake by the whole plant (tops plus roots) declined steadily with increasing pH. Although complete major (except P) and minor nutrients were added regularly, there was variation in the uptake of nutrients with pH. Poor growth at low pH values was attributed to an Al-induced P deficiency within the plant and at high pH to a soil P deficiency and, to a smaller extent, to the increased concentration of Al in the plant tops.  相似文献   

5.
Mineral nutrition and growth of tropical maize as affected by soil acidity   总被引:11,自引:0,他引:11  
Soil constraints linked to low pH reduce grain yield in about 10% of the maize growing area in tropical developing countries. The aim of this research was to elucidate the reasons for this maize yield reduction on an oxisol of Guadeloupe. The field experiment had two treatments: the native non-limed soil (NLI, pH 4.5, 2.1 cmol Al kg–1, corresponding to 20% Al saturation), and the same soil limed 6 years prior to the experiment (LI, pH 5.3, 0 cmol Al kg–1). The soils were fertilized with P and N. The above-ground biomass, root biomass at flowering, grain yield and yield components, leaf area index (LAI), light interception, radiation-use-efficiency (RUE), P and N uptake, soil water storage, and soil mineral N were measured during the maize cycle. The allometric relationships between shoot N concentration, LAI and above-ground biomass in LI were similar to those reported for maize cropped in temperate regions, indicating that these relationships are also useful to describe maize growth on tropical soils without Al toxicity. In NLI, soil acidity severely affected leaf appearance, leaf size and consequently the LAI, which was reduced by 60% at flowering, although the RUE was not affected. Therefore, the reduction in the above-ground biomass (30% at flowering) and grain yield (47%) were due to the lower LAI and light interception. At flowering, the root/shoot ratio was 0.25 in NLI and 0.17 in LI, and the root biomass in NLI was reduced by 64% compared to LI. Nitrogen uptake was also reduced in NLI in spite of high soil N availability. Nevertheless, shoot N concentration vs aboveground biomass showed a typical decline in both treatments. In NLI, the shoot P concentration vs above-ground biomass relationship showed an increase in the early stages, indicating that P uptake and root-shoot competition for the absorbed P in the early plant stages controlled the establishment and the development of the leaf area.  相似文献   

6.
Sufficient supply of potassium (K) can alleviate the adverse effects of excess sodium (Na) on plant growth. However, it remains unclear if such a beneficial function is related to regulation of root growth and/or expression of K/Na transporters. Herein we report the responses of a rice cultivar, which was pretreated with normal nutrient solution for 1 month, to three levels of Na (0, 25, and 100 mM) without or with supply of K for 9 days. High Na (100 mM) significantly decreased plant growth, root activity, and total K uptake, and increased biomass ratio of roots to shoots. Short-term removal of K supply (9 days) did not affect root morphology and biomass ratio of roots to shoots, but decreased root activity of seedlings grown in high Na solution. K deficiency increased uptake of Na and transport of K from roots to shoots. Moreover, expression of OsHAK1, a putative K transporter gene, was upregulated by low Na (25 mM) and downregulated by high Na (100 mM) in roots. In leaves, its expression was suppressed by the Na treatments when K supply was maintained. Expression of OsHKT2;1, which encodes a protein that acts mainly as a Na transporter, was downregulated by high Na, but was enhanced by K deficiency both in roots and leaves. Expression of five other putative K/Na transporter or Na+/H+ genes, OsHKT1;1, OsHKT1;2, OsHKT2;3, OsNHX1, and OsSOS1, was not affected by the treatments. The results suggest that OsHAK1 and OsHKT2;1 were involved in the interactive effects of K and Na on their uptake and distribution in rice. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Poor growth of white lupin (Lupinus albus L.) on alkaline soils may result from its sensitivity to iron deficiency and poor nodulation. This study examined interactive effects of iron supply and high pH on the growth and nodulation of three genotypes differing in their sensitivity to iron deficiency. Three genotypes (P27486, Ultra and WTD180) were grown for 17 days in buffered solutions with Fe supply of 0.2, 2 and 20 μM. Solution pH was adjusted to 5.2, 6.5 or 7.5. Plant growth, nodulation and nutrient concentrations in plants were measured. Decreasing Fe supply decreased chlorophyll concentration in young leaves by up to 92%. Increasing pH decreased chlorophyll concentration by an average of 40% at pH 6.5 and by 47% at pH 7.5. The decrease of chlorophyll was less obvious in P27485 than in Ultra or WTD180. Shoot biomass was reduced by up to 18% by Fe deficiency, with such decrease being less for P27486. Increasing pH exacerbated the effect of Fe deficiency on shoot biomass only of Ultra. Decreasing Fe supply decreased nodule number by an average of 54%, and increasing pH decreased nodule number by 80%. P27486 formed the greatest number of nodules while WTD180 the least. P27486 had high Fe uptake and low internal requirement. Irrespective of genotype, leaf chlorosis positively correlated with cluster root formation. The results suggest that a combination of Fe deficiency and high pH impaired nodulation in L. albus, and that selection of genotypes for both tolerance of iron deficiency and good nodulation at high pH is important for a successful lupin crop on alkaline soils.  相似文献   

8.
In two pot-culture experiments with maize in a silty loam (P2 soil) contaminated by atmospheric deposition from a metal smelter, root colonization with indigenous or introduced arbuscular mycorrhizal (AM) fungi and their influence on plant metal uptake (Cd, Zn, Cu, Pb, Mn) were investigated. Soil was -irradiated for the nonmycorrhizal control. In experiment 1, nonirradiated soil provided the mycorrhizal treatment, whereas in experiment 2 the irradiated soil was inoculated with spores of a fungal culture from P2 soil or a laboratory reference culture, Glomus mosseae. Light intensity was considerably higher in experiment 2 and resulted in a fourfold higher shoot and tenfold higher root biomass. Under the conditions of experiment 1, biomass was significantly higher and Cd, Cu, Zn and Mn concentrations significantly lower in the mycorrhizal plants than in the nonmycorrhizal plants, suggesting a protection against metal toxicity. In contrast, in experiment 2, biomass did not differ between treatments and only Cu root concentration was decreased with G. mosseae-inoculated plants, whereas Cu shoot concentration was significantly increased with the indigenous P2 fungal culture. The latter achieved a significantly higher root colonization than G. mosseae (31.7 and 19.1%, respectively) suggesting its higher metal tolerance. Zn shoot concentration was higher in both mycorrhizal treatments and Pb concentrations, particularly in the roots, also tended to increase with mycorrhizal colonization. Cd concentrations were not altered between treatments. Cu and Zn, but not Pb and Cd root-shoot translocation increased with mycorrhizal colonization. The results show that the influence of AM on plant metal uptake depends on plant growth conditions, on the fungal partner and on the metal, and cannot be generalized. It is suggested that metal-tolerant mycorrhizal inoculants might be considered for soil reclamation, since under adverse conditions AM may be more important for plant metal resistance. Under the optimized conditions of normal agricultural practice, however, AM colonization even may increase plant metal absorption from polluted soils.  相似文献   

9.
The root morphology of ten temperate pasture species (four annual grasses, four perennial grasses and two annual dicots) was compared and their responses to P and N deficiency were characterised. Root morphologies differed markedly; some species had relatively fine and extensive root systems (Vulpia spp., Holcus lanatus L. and Lolium rigidum Gaudin), whilst others had relatively thick and small root systems (Trifolium subterraneum L. and Phalaris aquatica L.). Most species increased the proportion of dry matter allocated to the root system at low P and N, compared with that at optimal nutrient supply. Most species also decreased root diameter and increased specific root length in response to P deficiency. Only some of the species responded to N deficiency in this way. Root morphology was important for the acquisition of P, a nutrient for which supply to the plant depends on root exploration of soil and on diffusion to the root surface. Species with fine, extensive root systems had low external P requirements for maximum growth and those with thick, small root systems generally had high external P requirements. These intrinsic root characteristics were more important determinants of P requirement than changes in root morphology in response to P deficiency. Species with different N requirements could not be distinguished clearly by their root morphological attributes or their response to N deficiency, presumably because mass flow is relatively more important for N supply to roots in soil.Section editor: H. Lambers  相似文献   

10.
Liao H  Wan H  Shaff J  Wang X  Yan X  Kochian LV 《Plant physiology》2006,141(2):674-684
Aluminum (Al) toxicity and phosphorus (P) deficiency often coexist in acid soils that severely limit crop growth and production, including soybean (Glycine max). Understanding the physiological mechanisms relating to plant Al and P interactions should help facilitate the development of more Al-tolerant and/or P-efficient crops. In this study, both homogeneous and heterogeneous nutrient solution experiments were conducted to study the effects of Al and P interactions on soybean root growth and root organic acid exudation. In the homogenous solution experiments with a uniform Al and P distribution in the bulk solution, P addition significantly increased Al tolerance in four soybean genotypes differing in P efficiency. The two P-efficient genotypes appeared to be more Al tolerant than the two P-inefficient genotypes under these high-P conditions. Analysis of root exudates indicated Al toxicity induced citrate exudation, P deficiency triggered oxalate exudation, and malate release was induced by both treatments. To more closely mimic low-P acid soils where P deficiency and Al toxicity are often much greater in the lower soil horizons, a divided root chamber/nutrient solution approach was employed to impose elevated P conditions in the simulated upper soil horizon, and Al toxicity/P deficiency in the lower horizon. Under these conditions, we found that the two P-efficient genotypes were more Al tolerant during the early stages of the experiment than the P-inefficient lines. Although the same three organic acids were exuded by roots in the divided chamber experiments, their exudation patterns were different from those in the homogeneous solution system. The two P-efficient genotypes secreted more malate from the taproot tip, suggesting that improved P nutrition may enhance exudation of organic acids in the root regions dealing with the greatest Al toxicity, thus enhancing Al tolerance. These findings demonstrate that P efficiency may play a role in Al tolerance in soybean. Phosphorus-efficient genotypes may be able to enhance Al tolerance not only through direct Al-P interactions but also through indirect interactions associated with stimulated exudation of different Al-chelating organic acids in specific roots and root regions.  相似文献   

11.
土壤有效磷(P)含量低是限制植物生长的主要因素之一。根形态变化和根系大量分泌以柠檬酸为主的有机酸是植物适应土壤P素缺乏的重要机制。以广泛分布于我国北方的重要豆科牧草黄花苜蓿(Medicago falcata)和豆科模式植物蒺藜苜蓿(M. truncatula)为材料, 采用砂培方法, 研究了低P胁迫对其植株生长、根系形态和柠檬酸分泌的影响, 对比了两种苜蓿适应低P胁迫的不同策略。结果表明: 1)低P处理显著抑制了蒺藜苜蓿与黄花苜蓿的地上部生长, 而对地下部生长影响较小, 从而导致根冠比增加。2)低P胁迫显著降低黄花苜蓿的总根长和侧根长, 而对蒺藜苜蓿的上述根系形态指标没有显著影响。3)低P胁迫促进两种苜蓿根系的柠檬酸分泌, 无论是在正常供P还是低P胁迫条件下, 黄花苜蓿根系分泌柠檬酸量显著高于蒺藜苜蓿根系。上述结果表明, 黄花苜蓿和蒺藜苜蓿对低P胁迫的适应策略不同, 低P胁迫下, 黄花苜蓿主要通过根系大量分泌柠檬酸, 活化根际难溶态P来提高对P的吸收, 而蒺藜苜蓿维持较大的根系是其适应低P胁迫的主要策略。  相似文献   

12.
Nutrient acquisition and growth of citronella Java (Cymbopogon winterianus Jowitt) was studied in a P-deficient sandy soil to determine the effects of mycorrhizal symbiosis and soil compaction. A pasteurized sandy loam soil was inoculated either with rhizosphere microorganisms excluding VAM fungi (non-mycorrhizal) or with the VAM fungus, Glomus intraradices Schenck and Smith (mycorrhizal) and supplied with 0, 50 or 100 mg P kg-1 soil. The soil was compacted to a bulk density of 1.2 and 1.4 Mg m-3 (dry soil basis). G. intraradices substantially increased root and shoot biomass, root length, nutrient (P, Zn and Cu) uptake per unit root length and nutrient concentrations in the plant, compared to inoculation with rhizosphere microorganisms when the soil was at the low bulk density and not amended with P. Little or no plant response to the VAM fungus was observed when the soil was supplied with 50 or 100 mg P kg-1 soil and/or compacted to the highest bulk density. At higher soil compaction and P supply the VAM fungus significantly reduced root length. Non-mycorrhizal plants at higher soil compaction produced relatively thinner roots and had higher concentrations and uptake of P, Zn and Cu than at lower soil compaction, particularly under conditions of P deficiency. The quality of citronella Java oil measured in terms citronellal and d-citronellol concentration did not vary appreciably due to various soil treatments.  相似文献   

13.
A factorial experiment was conducted to determine the effect of aluminium (0 and 600M) and media (sand, and 1:1 sand:soil) on mycorrhizal (M) and non-mycorrhizal (NM) highbush blueberry plantlets. There were no differences in nutrient uptake and total plant dry weight between M and NM plantlets. However, more root growth, as determined by dry weight, was observed in M than NM plantlets. The plantlets growing in sand had more dry weight than did those in the soil medium. Although the root growth and shoot growth were reduced by the 600M Al treatment, the direct effect of Al on plantlet growth was not clear due to Al and P interactions. Plant nutrient uptake was reduced by high concentrations of Al, suggesting that high Al concentration limited the ability of roots to acquire most of the nutrients. Mycorrhizal cortical cell infection levels of 15–20% wene maintained in the roots in soil medium but decreased to about 5% over the 6 weeks of the experiment in the sand medium. Although M plantlets accumulated more Al in their roots, Al was readily transported to the leaf tissues of M and NM plantlets.  相似文献   

14.
Effects on leaf growth, biomass accumulation and root morphogenesis associated with the establishment of phosphorus (P) deficiency were studied on maize in order to test the hypothesis that the root system response can be accounted for by the effect of P deficiency on the carbon budget of the plant. P deprivation had a large and rapid negative effect on leaf expansion. For 7 d after P deprivation, the total dry matter production per plant was almost fully accounted for by the effect of P starvation on leaf growth and its subsequent effect on photosynthetically active radiation (PAR) interception. No strong effect of P deficiency was observed on the radiation use efficiency during this first period, although it was reduced thereafter. Root growth was slightly enhanced a few days after P starvation, but strongly reduced thereafter. The elongation rate of axile roots was maintained throughout the experiment, whereas emergence of new axile roots and elongation of first-order laterals were drastically reduced. The density of first-order laterals was not severely affected. These morphological responses are very similar to what is observed when root growth is limited by the availability in carbohydrates. The results are therefore compatible with the hypothesis that P deficiency mainly affects the root system morphology through its effect on the carbon budget of the plant with no additional specific effect of P deficiency on root morphogenesis. The drastic and early reduction of shoot growth after P deprivation may explain that more carbohydrates were available for root growth which was observed a few days after P starvation and reported by several authors. Later on, however, because of the reduced leaf area of P-deprived plants, their capacity to intercept light was severely reduced so that root growth was finally reduced.Keywords: Zea mays L., maize, phosphorus, root, root morphogenesis.   相似文献   

15.
Reduced net photosynthesis (Pn) and decreasing shoot and root biomass are typical effects of phosphorus deficiency in plants. Lower biomass accumulation could be the result of reduced Pn (source limitation), but may also be due to direct negative effects of low P availability on growth (sink limitation). Because of the principal importance of root growth for P uptake, this study specifically examined the question whether source or sink limitations were responsible for reduced root growth rates under P deficiency. Rice plants were grown in nutrient solutions with four levels of P supply and at two light treatments and the effect of Pxlight treatments on growth and carbohydrate distribution was observed. Plants had up to 70% higher Pn when grown with natural (high) light compared with low light. Higher Pn, however, did not lead to additional growth under P deficiency, suggesting that assimilate supply from source leaves to roots was not a limiting factor under P deficiency. This was supported by observations that root starch concentrations increased in P-deficient roots. The comparison of two genotypes with different tolerance to P deficiency showed that the more tolerant one preferentially distributed P to roots where the additional P stimulated root growth and, ultimately, P uptake. The results therefore suggest that source limitation is of little importance under P deficiency. Even at highly sub-optimal tissue P concentrations of below 0.7 mg P g(-1) dry weight, plants were able to produce enough assimilates to sustain growth rates that were directly limited by low P availability.  相似文献   

16.
Waterlogging frequently reduces plant biomass allocation to roots. This response may result in a variety of alterations in mineral nutrition, which range from a proportional lowering of whole-plant nutrient concentration as a result of unchanged uptake per unit of root biomass, to a maintenance of nutrient concentration by means of an increase in uptake per unit of root biomass. The first objective of this paper was to test these two alternative hypothetical responses. In a pot experiment, we evaluated how plant P concentration of Paspalum dilatatum, (a waterlogging-tolerant grass from the Flooding Pampa, Argentina) was affected by waterlogging and P supply and how this related to changes in root-shoot ratio. Under both soil P levels waterlogging reduced root-shoot ratios, but did not reduce P concentration. Thus, uptake of P per unit of root biomass increased under waterlogging. Our second objective was to test three non-exclusive hypotheses about potential mechanisms for this increase in P uptake. We hypothesized that the greater P uptake per unit of root biomass was a consequence of: (1) an increase in soil P availability induced by waterlogging; (2) a change in root morphology, and/or (3) an increase in the intrinsic uptake capacity of each unit of root biomass. To test these hypotheses we evaluated (1) changes in P availability induced by waterlogging; (2) specific root length of waterlogged and control plants, and (3) P uptake kinetics in excised roots from waterlogged and control plants. The results supported the three hypotheses. Soil P avail-ability was higher during waterlogging periods, roots of waterlogged plants showed a morphology more favorable to nutrient uptake (finer roots) and these roots showed a higher physiological capacity to absorb P. The results suggest that both soil and plant mechanisms contributed to compensate, in terms of P nutrition, for the reduction in allocation to root growth. The rapid transformation of the P uptake system is likely an advantage for plants inhabiting frequently flooded environments with low P fertility, like the Flooding Pampa. This advantage would be one of the reasons for the increased relative abundance of P. dilatatum in the community after waterlogging periods. Received: 15 February 1997 / Accepted: 20 May 1997  相似文献   

17.
Aluminum-mycorrhizal interactions in the physiology of pitch pine seedlings   总被引:7,自引:0,他引:7  
Aluminum (Al) in the rhizosphere adversely affects plant nutrition and growth. Although many conifer species, and pitch pine (Pinus rigida) in particular, have evolved on acidic soils where soluble Al is often high, controlled environment studies often indicate that Al interferes with seedling growth and nutrient relations. Under normal field conditions, conifer roots grow in a symbiotic relationship with ectomycorrhizal fungi, and this association may modulate the effects of Al on root physiology. To investigate the influence of mycorrhizal infection on Al toxicity, pitch pine seedlings were grown with or without the ectomycorrhizal symbiont Pisolithus tinctorius and were exposed to low levels of Al in sand culture. Aluminum at 50 μM reduced nonmycorrhizal seedling growth and increased foliar Al concentrations, but did not alter photosynthetic gas exchange or other aspects of seedling nutrition. Nonmycorrhizal seedlings exposed to 200 μM Al exhibited decreased growth, increased transpiration rates, decreased water use efficiency, increased foliar Al and Na levels, and reduced foliar P concentrations. Seedlings inoculated with P. tinctorius exhibited unaltered growth, physiological function, and ionic relations when exposed to Al. The fungal symbiont evidently modulated ionic relations in the rhizosphere, reducing Al-P precipitation reactions, Al uptake, and subsequent root and shoot tissue Al exposure.  相似文献   

18.
Arsenic (As) contamination of irrigation water represents a major constraint to Bangladesh agriculture. While arbuscular mycorrhizal (AM) fungi have their most significant effect on P uptake, they have also been shown to alleviate metal toxicity to the host plant. This study examined the effects of As and inoculation with an AM fungus, Glomus mosseae, on lentil (Lens culinaris L. cv. Titore). Plants were grown with and without AM inoculum for 9 weeks in a sand and terra green mixture 50:50 v/v and watered with five levels of As (0, 1, 2, 5, 10 mg As L−1 arsenate). Inoculum of Rhizobium leguminosarum b.v. Viceae strain 3841 was applied to all plants. Plants were fed with modified Hoagland solution (1/10 N of a full-strength solution and without P). Plant height, leaf number, pod number, plant biomass and shoot and root P concentration/offtake increased significantly due to mycorrhizal infection. Plant height, leaf/ pod number, plant biomass, root length, shoot P concentration/offtake, root P offtake and mycorrhizal infection decreased significantly with increasing As concentration. However, mycorrhizal inoculation reduced As concentration in roots and shoots. This study shows that growing lentil with compatible AM inoculum can minimise As toxicity and increase growth and P uptake.  相似文献   

19.
Aluminium (Al), mobilized by acidic deposition, has been claimed to be a major threat to forest vitality. Fine root mortality, decreased root growth and reduced nutrient uptake have been observed in controlled laboratory experiments where roots of tree seedlings were exposed to elevated concentrations of Al. Yet, evidence for Al-induced root damage from forest stands is scarcely reported. Nevertheless, Al dissolved in soil water has received a key role in the critical load concept for forests. Here, we present effects of artificially elevated concentrations of Al in the soil solution on fine roots in a middle-aged stand of Norway spruce (Picea abies (L.) Karst.). Although the inorganic Al concentrations about 200 µM and Ca:Al ratio about 0.7 that were established in the soil solution within this experiment have been associated with reduction of root growth and root mortality for spruce seedlings in hydroponic studies, no acute damage on fine roots was observed. Three years of treatment did not cause visual root damage, nor were effects on fine root necromass observed. Fine root necromass made up about 10% of fine root biomass for all treatments. However, significantly lower molar Ca:Al and Mg:Al ratios in living and dead fine roots were found in the plots where Al concentrations were highest and ratios of Ca to Al in the soil solution were lowest. The lack of response on fine root biomass suggests that forest stands tolerate higher Al levels than results from laboratory experiments indicate. We conclude that effect studies in the laboratory have limited value for field conditions. The key role of Al toxicity, expressed as the Ca/Al ratio, in critical load calculations for forests may have to be reconsidered.  相似文献   

20.
为探讨供磷(P)对米老排(Mytilaria laosensis)生长和养分状况的影响,采用土培的方法,研究了不同供磷水平下米老排苗木的生长、养分含量、养分累积量和P吸收效率。结果表明,随着供P水平的提高,米老排苗木的苗高、生物量和养分累积量均呈先上升后下降的趋势;地径呈先增加后稳定的趋势;叶片和全株中的养分含量变化一致,氮(N)含量变化不明显,钾(K)含量呈先降低后升高的趋势,而P含量明显提高;P吸收效率呈现降低-升高-降低的趋势。在单株供P为30 mg时,米老排苗木的叶生物量、根生物量、叶片中N累积量及P吸收效率最大。当供P水平达到45 mg时,米老排苗木的苗高、茎生物量、总生物量、叶片中的P、K累积量和全株中的N、P、K累积量均达到最大值。而供P水平达60 mg时,米老排苗木苗高、生物量、养分累积量和P吸收效率均明显下降。这说明适合米老排苗木生长的供P水平为每株30~45 mg。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号