首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proton translocation assessed by the quinacrine fluorescence technique was compared with oxygen uptake during thiosulphate oxidation by cells of Thiobacillus denitrificans. The addition of thiosulphate to cell suspensions resulted in an outwardly directed proton translocation as reflected by an increased quinacrine fluorescence. Compared to the O2 uptake activity, the proton translocating system was much more sensitive to proton conductors, other ionophores and inhibitors of electron transport. The results indicate that (a) the proton-translocation activity (membrane energization) is enhanced in aged cell suspensions, (b) intactness of the cytoplasmic membrane is essential for establishing a protonmotive force in cells, (c) the fluorescence increase and proton translocation are reversible processes, (d) inhibitors of electron transport may also act as proton conductors by altering the integrity of the cytoplasmic membrane.Abbreviations CCCP carbonyl cyanide m-chlorophenyl-hydrazone - DBP 2,4-dibromophenol - DNP 2,4-dinitrophenol - HOQNO 2-heptyl-4-hydroxyquinoline-N-oxide - PCP pentachlorophenol - TPB tetraphenyl boron - TTFA 1-[thenoyl-(2)]-3,3,3-trifluoracetone  相似文献   

2.
Particulate fractions of Thiobacillus denitrificans catalyse the phosphorylation of ADP to ATP during the oxidation of various inorganic sulphur compounds or NADH via an electron transport chain. On the other hand, a soluble cell-free fraction synthesized ATP from APS and inorganic phosphate.The production of ATP was verified either by the firefly luciferin-luciferase enzyme system or by the incorporation of 32Pi into ATP. During the oxidation of sulphide, sulphite and NADH the production of ATP from ADP by particulate fractions is inhibited by compounds that inhibit electron transfer and by uncouplers of oxidative phosphorylation. However, these compounds had little effect on the production of ATP from AMP during the oxidation of sulphite by the soluble fraction. NADH was the most effective electron donor for oxidative phosphorylation. The soluble fraction contained high activities of ATP sulphurylase, inorganic pyrophosphatase and adenylate kinase but ADP sulphurylase activity was relatively low. The effects of inhibitors on ATP production from APS and Pi are compared with those on adenylate kinase and ATP sulphurylase.Abbreviations APS adenosine-5-phosphosulphate - DNP 2,4-dinitrophenol - HOQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide  相似文献   

3.
Anton Hofmann 《Planta》1971,102(1):72-84
Summary Inhibitors and uncouplers of phosphorylation, i.e., arsenate, 2.4-dinitrophenol (DNP), pentachlorophenol (PCP), and carbonyl cyanide m-chlorophenylhydrazone (CCCP), inhibit the assimilation of nitrite by the green alga Ankistrodesmus braunii in the dark and in the light. In a medium containing nitrate, these inhibitors interrupt nitrate reduction at the level of nitrite. In phosphatedeficient algae, the assimilation of nitrite can be decreased by a concomitant, energy-dependent uptake of chloride and phosphate ions. These results support the assumption that high-energy phosphate is required for the assimilation of nitrite.CO2 and glucose (after pre-illumination) increase nitrite assimilation in the light. Photosynthetic nitrite reduction is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), an inhibitor of oxygen evolution, and by disalicylidene-propanediamine-(1,3) (DSPD), an inhibitor of the photosynthetic reduction of ferredoxin.
Abkürzungen CCCP Carbonylcyanid-m-chlorphenylhydrazon - DCMU 3-(3,4-Dichlorphenyl)-1,1-dimethylharnstoff - DNP 2,4-Dinitrophenol - DSPD Disalicylidenpropandiamin-(1,3) - PCP Pentachlorphenol - JAA Jodacetamid  相似文献   

4.
Crude membrane preparation fromFibrobacter succinogenes S85 were investigated and found to contain NADH dehydrogenase (NADH:decylubiquinone oxidoreductase) and NADH-linked fumarate reductase activities. Under aerobic conditions the maximum NADH dehydrogenase activity (252 nmoles/min/mg protein) was ten times greater than that of NADH-fumarate reductase (23 nmoles/min/mg protein). NADH-fumarate reductase was strongly inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide (HOQNO), rotenone, HgCl2, ando-phenanthroline. Inhibition of the NADH dehydrogenase by the first three compounds, particularly rotenone, accounted for most of the effects on NADH-fumarate reductase. The -band of ab-type cytochrome was resolved into two cytochromes, a cytochromeb 560 (oxidized by addition of HOQNO) and a cytochromeb 563 (oxidized by subsequent addition of fumarate).Published with the approval of the Director of the Agricultural Experiment Station, North Dakota State University, as journal article no. 2137.  相似文献   

5.
The obligately fermentative aerotolerant bacterium Zymomonas mobilis was shown to possess oxidative phosphorylation activity. Increased intracellular ATP levels were observed in aerated starved cell suspension in the presence of ethanol or acetaldehyde. Ethanolconsuming Z. mobilis generated a transmembrane pH gradient. ATP synthesis in starved Z. mobilis cells could be induced by external medium acidification of 3.5–4.0 pH units. Membrane vesicles of Z. mobilis coupled ATP synthesis to NADH oxidation. ATP synthesis was sensitive to the protonophoric uncoupler CCCP both in starved cells and in membrane vesicles. The H+-ATPase inhibitor DCCD was shown to inhibit the NADH-coupled ATP synthesis in membrane vesicles. The physiological role of oxidative phosphorylation in this obligately fermentative bacterium is discussed.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - CCCP carbonyl cyanide m-chlorophenylhydrazone  相似文献   

6.
Respiratory particles from hydrogen-grown Anacystis nidulans were found to oxidize H2, NADPH, NADH, succinate and ascorbate plus N,N,N,N-tetramethyl-p-phenylenediamine at rates corresponding to 28, 15, 6, 2.5, and 70 nmol O2 taken up x mg protein–1xmin–1, respectively. The particles were isolated by brief sonication of lysozyme-pretreated cells. Respiratory activities were studied in terms of both substrate oxidation and O2 uptake. The stoichiometry between oxidation of H2, NADPH, NADH or succinate, and consumption of O2 was calculated to be 1.95+-0.1 with each substrate.Inhibitors of flavoproteins did not affect the oxyhydrogen reaction while 2-n-heptyl-8-hydroxyquinoline-N-oxide as well as compounds known to block the terminal oxidase impaired the oxidation of both H2 and of NAD(P)H or succinate in a parallel fashion. No additivity of O2 uptake was observed when NADPH, NADH or succinate was present in addition to H2. Instead, H2 uptake was depressed under such conditions, and also the oxidation of NAD(P)H or succinate was increasingly lowered by increasing H2 tensions.The results suggest that in Anacystis molecular hydrogen is oxidized through the same type of respiratory chain as are NAD(P)H and succinate. Moreover, the cyanide-resistant branch of respiratory O2 uptake will be discussed, and a few results obtained with particles prepared from thylakoid-free Anacystis will also be presented.Abbreviations BAL 2,3-dimercaptopropanol-(1) - DCPIP 2,6-dichlorophenolindophenol - HOQNO 2-n-heptyl-8-hydroxyquinoline-N-oxide - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - tricine N-tris-(hydroxymethyl)-methylglycine - Tris tris-(hydroxymethyl)-aminomethane - TTFA thenoyltrifluoroacetone NAD(P)H indicates NADPH and/or NADH  相似文献   

7.
The rotenone sensitive NADH: menaquinone oxidoreductase (NDH-I or complex I) from the thermohalophilic bacterium Rhodothermus marinus has been purified and characterized. Three of its subunits react with antibodies against 78, 51, and 21.3c kDa subunits of Neurospora crassa complex I. The optimum conditions for NADH dehydrogenase activity are 50°C and pH 8.1, and the enzyme presents a K M of 9 M for NADH. The enzyme also displays NADH:quinone oxidoreductase activity with two menaquinone analogs, 1,4-naphtoquinone (NQ) and 2,3-dimethyl-1,4-naphtoquinone (DMN), being the last one rotenone sensitive, indicating the complex integrity as purified. When incorporated in liposomes, a stimulation of the NADH:DMN oxidoreductase activity is observed by dissipation of the membrane potential, upon addition of CCCP. The purified enzyme contains 13.5 ± 3.5 iron atoms and 3.7 menaquinone per FMN. At least five iron—sulfur centers are observed by EPR spectroscopy: two [2Fe–2S]2+/1+ and three [4Fe–4S]2+/1+ centers. By fluorescence spectroscopy a still unidentified chromophore was detected in R. marinus complex I.  相似文献   

8.
Chromatophores isolated from the marine phototrophic bacterium Rhodobacter sulfidophilus were found to photoreduce NAD with sulfide as the electron donor. The apparent K m for sulfide was 370 M and the optimal pH was 7.0. The rate of NAD photoreduction in chromatophore suspensions with sulfide as the electron donor (about 7–12 M/h·mol Bchl) was approximately onetenth the rate of sulfide oxidation in whole cell suspensions. NAD photoreduction was inhibited by rotenone, carbonyl cyanide-m-chlorophenylhydrazone, and antimycin A. Sulfide reduced ubiquinone in the dark when added to anaerobic chromatophore suspensions. These results suggest that electron transport from sulfide to NAD involves an initial dark reduction of ubiquinone followed by reverse electron transport from ubiquinol to NAD mediated by NADH dehydrogenase.Abbreviations Bchl bacteriochlorophyll - CCCP carbonyl cyanide-m-chlorophenylhydrazone - MOPS 3(N-morpholino)-propane sulfonate - Uq ubiquinone  相似文献   

9.
Summary The light-induced formation of NADH by whole cells of Rhodopseudomonas spheroides has been followed fluorimetrically and found to lag slightly behind cytochrome c oxidation. The uncoupler, FCCP1, abolished NADH formation which was also inhibited by HOQNO1. Electron flow from NADH to oxygen or cytochrome c was inhibited in chromatophores of R. spheroides by HOQNO, antimycin A and rotenone. From the known properties of the inhibitors used it is deduced that NADH formation in the light is dependent upon reversed electron flow. No light-induced formation of NAD(P)H by whole cells or chromatophores of Chlorobium thiosulfatophilum was detected either fluorimetrically or by extraction followed by enzymic assay although cytochrome c oxidation was extensive in whole cells. Extracts of C. thiosulfatophilum catalysed the rapid reduction of endogenous or mammalian cytochrome c; unlike R. spheroides this activity was found almost entirely in the soluble fraction and was insensitive to HOQNO, antimycin A and rotenone. No cytochrome b was detected in C. thiosulfatophilum by difference spectroscopy of pyridine haemochromes of acetone powders. The K m for NADH of NADH-cytochrome c reductase in both organisms was about 3 mol; the reductase was inhibited by NAD. The rates of NADPH-cytochrome c reductase in R. spheroides particles were too low for K m determination; for C. thiosulfatophilum particles the K m for NADPH was about 300 mol. The addition of NADH to soluble extracts of either organism caused the reduction of endogenous flavin that was reoxidised by ferricyanide. The NADH-cytochrome c reductase of C. thiosulfatophilum was not separated from ferredoxin on a DEAE column. It is concluded that in C. thiosulfatophilum the formation of NADH in an energy-linked reaction is unlikely; the possibility of a cyclic electron flow involving chlorophyll, ferredoxin, flavoprotein and cytochrome c is discussed.  相似文献   

10.
Summary NADH oxidation with the particulate fraction from dark aerobically grown Rhodospirillum rubrum is significantly stimulated by the addition of phosphate (Pi) and Mg++, or Pi, Mg++, ATP and the hexokinase-glucose system. K m values for Pi in NADH oxidation and phosphorylation are 10–3 m and 8×10–4 m, respectively. These K m values are almost the same as in corresponding photophosphorylation and oxidative phosphorylation catalyzed with chromatophores. As in the case of NADH oxidation with chromatophores, NADH oxidation with the particulate fraction has an optimal pH at 7.5 without additions, which is shifted to 6.9 by the addition of Pi and Mg++, or Pi, Mg++, ATP and the hexokinase-glucose system. The optimal pH for coupled phosphorylation is 6.9. 10 g per ml of oligomycin can suppress stimulation of NADH oxidation by Pi, or by the energy trapping system, and prevent the shift of optimal pH. The particulate fraction can catalyze Pi-incorporation into glucose-6-phosphate without externally added ATP, so that Pi-incorporation is inhibited by oligomycin. From these findings, it is concluded that NADH oxidation in the particulate fraction is tightly coupled to phosphorylation.  相似文献   

11.
The uptake of ammonia and O2 by washed cells of Nitrosomonas has been followed simultaneously and continuously using electrode techniques. The stoichiometry of NH 4 + oxidation, O2 uptake and NO 2 - production was 1 : 1.5 : 1.0 and for NH2OH oxidation a ratio of 1 for O2 : NO 2 - . A variety of inhibitors of electron transport and metals as well as uncouplers restricted ammonia uptake more markedly than O2 utilization. There is good evidence for the involvement of copper in the NH 4 + uptake process.A quinacrine fluorescence technique has been used to study the proton extrusion by washed cells on adding NH4Cl and NH2OH respectively as substrates. The uptake of NH 4 + was followed by the extrusion of H+ and this process was depressed by those inhibitors which were also effective in the electrode experiments. A requirement for copper is also established for the translocation of protons into the medium, resulting from the uptake of NH 4 + by cells.Abbreviations mCCCP carbonyl cyanide m-chlorophenylhydrazone - DBP 2,4 dibromophenol - DCCD N-N-dicyclohexylcarbodimide - DIECA Sodium diethyldithiocarbamate - DNP 2,4 dinitrophenol - HOQNO 2-heptyl-4-hydroxyquinoline-N-oxide - NBD chloride 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole - N-serve 2-chloro-6-trichloromethyl-pyridine - PCP pentachlorophenol - 2-TMP 2-trichloromethyl-pyridine - TPB tetraphenylboron - TTFA 1-[thenoyl-(2)]-3,3,3-trifluoracetone - KSCN Potassium thiocyanate  相似文献   

12.
Cells of Paracoccus denitrificans grown autotrophically with H2 as energy source contained a branched respiratory chain. The presence of two terminal oxidases was indicated by two cyanide sensitive sites (K i =10-5 M and K i =10-3 M). While oxidation of NADH and succinate apparently proceeded via both electron pathways as shown by the inhibition of respiration with cyanide and Antimycin A, oxidation of H2 involved only the terminal oxidase which was less sensitive to KCN. Oxidation of H2 was not inhibited by rotenone, and sensitive to only relatively high concentrations of Antimycin A (50 nmol/mg).Under our growth conditions, autotrophic cells contained only very small amounts of cytochrome a +a 3 . A cytochrome b was able to bind CO (with a peak at 418 nm and a trough at 434 nm in the reduced plus CO minus reduced difference spectrum). This cytochrome b had the spectral characteristics of cytochrome o and could be the alternate oxidase. The respiratory chain contained two b cytochromes (b 556 and b 562 at 77°K); under steady state conditions only b 556 was significantly reduced by NADH and succinate while both b 556 and b 562 were reduced by H2.Measurement of respiration-driven proton translocation by spheroplasts showed that the oxidation of H2 by O2 was associated with a vectorial ejection of H+ (in the outward direction) with aH+/O value of 6 to 7.A similar result was obtained with succinate. Oxidation of endogenous substrates gave H+/O values corresponding to a H+/site ratio of 3 with 3 sites functioning in absence of inhibitors, two sites in the presence of rotenone and one site in the presence of antimycin. The H+/O values indicated that two energy transducing sites were involved in the oxidation of H2 by O2.Measurement of ATP synthesis in membrane vesicles confirmed that phosphorylation was coupled to H2 oxidation. However, such determinations which necessitated the use of inverted vesicles, gave P/O values too low to allow any conclusions to be made on the number of coupling sites.  相似文献   

13.
Summary The reduction of fumarate, which is a characteristic feature of anoxic catabolism of some invertebrates, was investigated in mitochondria or mitochondrial fragments prepared from the body wall musculature of the lug-wormArenicola marina (Annelida, Polychaeta).A coupling of the reduction of fumarate to succinate to the oxidation of NADH was demonstrated.The pathway of hydrogen transfer from NADH to fumarate was studied by using specific inhibitors of the respiratory chain. From the results it is concluded that parts of the respiratory chain are involved.During anaerobiosis mitochondria formed succinate at a high rate from malate which had been added as substrate. The formation of succinate is coupled to oxidative phosphorylation. The ratio ATP-production/formation of succinate was found to be 0.6 to 0.8.Succinate formation from malate is inhibited by arsenite and monofluoroacetate.TheK m for fumarate of the fumarate reductase inArenicola body wall musculature is 2.5×10–5 M.Abbreviations Ap5A P1,P5-di(adenosine-5-)pentaphosphate - APAD acetylpyridine adenine dinucleotide - DNP 2,4-dinitrophenol - fw fresh weight (of body wall musculature) - NaFAc sodiummonofluoroacetic acid - PCA perchloric acid - PEP phosphoenolpyruvate Supported by Deutsche Forschungsgemeinschaft (Ze 40/13, Ze 40/14 and Gr 456/5)  相似文献   

14.
15N-labelled nitrate was used to show that nitrate reduction by leaf discs in darkness was suppressed by oxygen, whereas nitrite present within the cell could be reduced under aerobic dark conditions. In other experiments, unlabelled nitrite, allowed to accumulate in the tissue during the dark anaerobic reduction of nitrate was shown by chemical analysis to be metabolised during a subsequent dark aerobic period. Leaves of intact plants resembled incubated leaf discs in accumulating nitrite under anaerobic conditions. Nitrate, n-propanol and several respiratory inhibitors or uncouplers partly reversed the inhibitory effect of oxygen on nitrate reduction in leaf discs in the dark. Of these nitrate and propanol acted synergistically. Reversal was usually associated with inhibition of respiration but some concentrations of 2,4-dinitrophenol (DNP) and ioxynil reversed inhibition without affecting respiratory rates. Respiratory inhibitors and uncouplers stimulated nitrate reduction in the anaerobic in vivo assay i.e. in conditions where the respiratory process is non-functional. Freezing and thawing leaf discs diminished but did not eliminate the sensitivity of nitrate reduction to oxygen inhibition.Abbreviations DNP 2,4-dinitrophenol - HOQNO 8-hydroxyquinoline-N-oxide - DCPIP 2,6-dichlorophenolindophenol - CCCP Carbonyl cyanide m-chlorophenylhydrazone - TES N-tris(hydroxymethyl)methyl-2-amino ethanesulphonic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid  相似文献   

15.
Conditions promoting maximal in vitro activity of the particulate NADH:fumarate reductase from Fibrobacter succinogenes were determined. This system showed a pH optimum of 6.0 in K+ MES buffer only when salt (NaCl or KCl) was present. Salt stimulated the activity eightfold at the optimal concentration of 150m M. This effect was due to stimulation of fumarate reductase activity as salt had little effect on NADH: decylubiquinone oxidoreductase (NADH dehydrogenase). The stimulation of fumarate reductase by salt at pH 6.0 was not due to removal of oxaloacetate from the enzyme. Kinetic parameters for several inhibitors were also measured. NADH dehydrogenase was inhibited by rotenone at a single site with a K i of 1 M. 2-Heptyl-4-hydroxyquinonline-N-oxide (HOQNO) inhibited NADH: fumarate reductase with a K i of 0.006 M, but NADH dehydrogenase exhibited two HOQNO inhibition constants of approximately 1 M and 24 M. Capsaicin and laurylgallate each inhibited NADH dehydrogenase by only 20% at 100 M. NADH dehydrogenase gave K m values of 1 M for NADH and 4 M for reduced hypoxanthine adenine dinucleotide.Published with the approval of the Director of the Agricultural Experiment Station, North Dakota State University, as journal article no. 2201  相似文献   

16.
Summary The effect of energy deprivation on the intracellular transport and secretion of thyroglobulin was studied in open follicles isolated from porcine thyroids. Follicles were pulse-labeled with 3H-leucine or 3H-galactose. Labeled thyroglobulin was secreted into the incubation medium where it was isolated by means of immunoprecipitation. Secretion was followed in chase incubations under various experimental conditions using CCCP (carbonyl-cyanide-mchlorophenylhydrazone) or DNP (dinitrophenol), both uncouplers of oxidative phosphorylation, or CN, which inhibits respiration. CCCP (1 M) was shown to inhibit exocytosis by about 80%, DNP (0.1–5 mM) by 45–85%, and CN (0.5–1.1 mM) by 5–55%. By combining CN with the ionophore monensin, which blocks transport through the Golgi complex but does not essentially interfere with exocytosis, evidence was obtained that CN also inhibits transport of thyroglobulin from the Golgi cisternae to the exocytic vesicles by 40%. Electron-miroscopic autoradiography of isolated thyroid lobes from the rat also indicated that transport of 3H-leucine label into the follicle lumen is inhibited in the presence of CCCP or CN. Intracellular ATP content was found to be about 40% of the control level in follicles incubated with CCCP (1 uM) or CN (0.9 mM). The results show that the transport of thyroglobulin from the Golgi complex to the exocytic vesicles as well as from the exocytic vesicles into the follicle lumen is dependent upon metabolic energy. The transport blocks are probably associated with inhibited membrane fusions and fissions.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - DNP dinitrophenol  相似文献   

17.
The components involved in the respiratory system of the euryarcheon Halobacterium salinarum were investigated by spectroscopic and polarographic techniques. Previous results about the cytochrome composition could be verified. However, under low oxygen tension, the expression of a d-type cytochrome was detected. Membranes exerted an NADH– and succinate–cytochrome-c oxidoreductase as well as an NADH and succinate oxidase activity. These activities could be blocked by the following inhibitors: 7-jodocarboxylic acid, giving evidence for the presence of a type II NADH dehydrogenase, antimycin A, and myxothiazol, indicating the presence of a complex III analog, and the typical succinate dehydrogenase (SDH) and terminal oxidase inhibitors. Complex I inhibitors like rotenone and annonine were inactive, clearly excluding the presence of a coupled NADH dehydrogenase. In addition, no [Fe-S] resonances in the region of the NADH dehydrogenase (NDH) clusters could be observed after NADH addition. One of the terminal oxidases could be shown to act as a cytochrome-c oxidase with a K m value of 37 M and an activation energy of 23.7 kJ/mol. The relative molecular mass of the endogenous c-type cytochrome could be determined as 14.1 kD. The complex III analog could be enriched after detergent extraction with Triton X-100 and hydroxylapatite (HTP) chromatography. The partially purified complex contained a Rieske iron–sulfur cluster, b- and c-type cytochromes, and was catalytically active in the decylubiquinone–cytochrome-c oxidoreductase assay.  相似文献   

18.
The release of cytochrome c from intermembrane space of mitochondria into cytosol is one of the critical events in apoptotic cell death. The important anti-apoptotic oncoprotein Bcl-2 inhibits this process. In the present study it was shown that apoptosis and release of cytochrome c induced by staurosporine or by tumor necrosis factor- in HeLa cells were not affected by inhibitors of respiration (rotenone, myxothiazol, antimycin A) or by uncouplers (CCCP, DNP) that decrease the membrane potential at the inner mitochondrial membrane. The inhibitors of respiration and the uncouplers did not affect also the anti-apoptotic activity of Bcl-2.  相似文献   

19.
Summary A cytochrome containing fraction virtually devoid of the photosynthetic apparatus (bacteriochlorophyll and/or chromatophores) was isolated from Rps. palustris grown photolithotrophically with S2O3 =as the exogenous electron donor. This fraction contained predominantly cytochromes of c, a and o type and exhibited thiosulfate: cytochrome c oxidoreductase and ferrocytochrome c:O2 oxidoreductase activities. Under anaerobic conditions the enzyme preparation catalyzed an ATP-dependent NAD+ reduction by S2O3 =in the dark involving a reversal of electron transfer from cytochrome c and yielding a molar stoichiometry of approximately 2:1 for the ferrocytochrome c oxidized and NAD+ reduced. In this process approximately 4 to 7 molar equivalents of ATP were utilized/equivalent of NAD+ reduced. The optimal reaction occurred at pH 8.0 and in the presence of 55 M added mammalian cyt. c, 1.7 mM Mg++, 1.7 mM ATP and 7.0 mM S2O3 =. The S2O3 =-linked ATP-driven reduction of NAD+ as well as the coupled oxidation of cyt. c were inhibited completely by 5 m CCCP or 10 M DNP and the reaction was also markedly sensitive to other uncouplers of the energy transfer reactions. The pathway of electron transfer from S2O3 = to NAD+ appears to involve cyt. c, b, and flavoprotein systems as evidenced by the complete inhibition of the process by low concentrations of antimycin A, NOQNO, rotenone and amytal.Non-standard abbreviations BAL British Anti-Lewisite (2,3-Dimercaptopropanol) - CCCP Carbonyl-cyanide-m-chlorophenylhydrazone - DBP 2,6-Dibromophenol - DNP 2,4-Dinitrophenol - EDTA Ethylenediamine tetraacetic acid - GSH reduced glutathione - NOQNO 2-n-Nonyl-4-hydroxyquinoline-N-oxide - PCP Pentachlorophenol - PABA p-aminobenzoic acid. Post doctorate fellow of the Deutsche Forschungsgemeinschaft  相似文献   

20.
The protonophoric uncouplers carbonyl cyanide m-chlorophenylhydrazone (CCCP), 2,3,4,5,6-pentachlorophenol (PCP) and 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole (TTFB) inhibited the Hill reaction with K3[Fe(CN)6] (but not with SiMo) in chloroplast and cyanobacterial membranes (the I50 values were approx. 1–2, 4–6 and 0.04–0.10 M, respectively). The inhibition is due to oxidation of the uncouplers on the Photosystem II donor side (ADRY effect) and their subsequent reduction on the acceptor side, ie. to the formation of a cyclic electron transfer chain around Photosystem II involving the uncouplers as redox carriers. The relative amplitude of nanosecond chlorophyll fluorescence in chloroplasts was increased by DCMU or HQNO and did not change upon addition of uncouplers, DBMIB or DNP-INT; the HQNO effect was not removed by the uncouplers. The uncouplers did not inhibit the electron transfer from reduced TMPD or duroquinol to methylviologen which is driven by Photosystem I. These data show that CCCP, PCP and TTFB oxidized on the Photosystem II donor side are reduced by the membrane pool of plastoquinone (Qp) which is also the electron donor for K3 [Fe(CN)6] in the Hill reaction as deduced from the data obtained in the presence of inhibitors. Inhibition of the Hill reaction by the uncouplers was maximum at the pH values corresponding to the pK of these compounds. It is suggested that the tested uncouplers serve as proton donors, and not merely as electron donors on the oxidizing side of Photosystem II.Abbreviations ADRY- acceleration of the deactivation reactions of the water-splitting enzyme system Y - ANT2p- 2-(3-chloro-4-trifluoromethyl) anilino-3,5-dinitrothiophene - CCCP- carbonyl cyanide m-chlorophenylhydrazone - DBMIB- 2,5-dibromo-3-methyl 6-isopropyl-p-benzoquinone - DCMU- 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DNP-INT- 2-iodo-6-isopropyl-3-methyl 2,4,4-trinitrodiphenyl ether - DPC- 1,5-diphenylcarbazide - DPIP- 2,6-dichlorophenolindophenol - FCCP- carbonyl cyanide p-trifuoromethoxyphenylhydrazone - FeCy- potassium ferricyanide - HQNO- 2-n-heptyl-4-hydroxyquinoline N-oxide - (MN)4- the tetranuclear Mn cluster of water oxidizing complex - P680- photoactive Chl of the reaction center of Photosystem II - PCP- 2,3,4,5,6-pentachlorophenol - PS- photosystem - QA and QB- primary and secondary plastoquinones of PS II - QC and QZ- plastoquinone binding sites in the cytochrome blf complex - Qp- membrane pool of plastoquinone - SiMo- sodium silicomolybdate - TMPD- N,N,N-tetramethyl-p-phenylenediamine - TTFB- 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole - WOC- water oxidixing complex - YZ- tyrosine-161 of the Photosystem II D1 polypeptide  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号