首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indolizidin-2-one amino acids (I2aas, 6S- and 6R-1) possessing 6S- and 6R-ring-fusion stereochemistry were introduced into the antimicrobial peptide gramicidin S (GS) to explore the relationships between configuration, peptide conformation and biological activity. Solution-phase and solid-phase techniques were used to synthesize three analogs with I2aa residues in place of the d-Phe-Pro residues at the turn regions of GS: [(6S)-I2aa4-5,4'-5']GS (2), [Lys2,2',(6S)-I2aa4-5,4'-5']GS (3) and [(6R)-I2aa4-5,4'-5']GS (4). Although conformational analysis of [I2aa4-5,4'-5']GS analogs 2-4 indicated that both ring-fusion stereoisomers of I2aa gave peptides with CD and NMR spectral data characteristic of GS, the (6S)-I2aa analogs 2 and 3 exhibited more intense CD curve shapes, as well as greater numbers of nonsequential NOE between opposing Val and Leu residues, relative to the (6R)-I2aa analog 4, suggesting a greater propensity for the (6S)-diastereomer to adopt the beta-turn/antiparallel beta-pleated sheet conformation. In measurements of antibacterial and antifungal activity, the (6S)-I2aa analog 2 exhibited significantly better potency than the (6R)-I2aa diastereomer 4. Relative to GS, [(6S)-I2aa4-5,4'-5']GS (2) exhibited usually 1/2 to 1/4 antimicrobial activity as well as 1/4 hemolytic activity. In certain cases, antimicrobial and hemolytic activities of GS were shown to be dissociated through modification at the peptide turn regions with the (6S)-I2aa diastereomer. The synthesis and evaluation of GS analogs 2-4 has furnished new insight into the importance of ring-fusion stereochemistry for turn mimicry by indolizidin-2-one amino acids as well as novel antimicrobial peptides.  相似文献   

2.
Bacterial resistance induced by the use of antibiotics has provided a chance for the development of antimicrobial peptides (AMPs), and modification of AMPs to enhance the antibacterial activity or stability has become a research focus. PMAP‐37 is an AMP isolated from porcine myeloid marrow, and studies on its modification have not yet been reported. In this study, three PMAP‐37 analogs named PMAP‐37(F9‐R), PMAP‐37(F34‐R), and PMAP‐37(F9/34‐R) were designed by residue substitution to enhance the positive charge. The antimicrobial activity of PMAP‐37 and its analogs in vitro and in vivo were detected. The results showed that compared with PMAP‐37, PMAP‐37(F9‐R) and PMAP‐37(F9/34‐R) exhibited antibacterial activity against S. flexneri CICC21534. Although PMAP‐37(F34‐R) had no antibacterial activity against S. flexneri CICC21534, its minimal inhibitory concentrations (MICs) were significantly lower than those of PMAP‐37 against most bacterial strains. Besides, all PMAP‐37 analogs were pH stable, retaining stable antibacterial activity after treatment with solution from pH 2 to pH 8/9. In addition, the PMAP‐37 analogs displayed increased thermal stability, and PMAP‐37(F34‐R) retained >60% antibacterial activity after boiling for 2 hours. Furthermore, the PMAP‐37 analogs exhibited impressive therapeutic efficacy in bacterial infections by reducing bacterial burden and inflammatory damage in the lung and liver, resulting in a reduction in mortality. Notably, the therapeutic effect of PMAP‐37(F34‐R) was comparable to that of ceftiofur sodium, and even superior to antibiotics in L. monocytogenes CICC21533 infection model. In conclusion, the PMAP‐37(F34‐R) may be a candidate for the treatment of bacterial infections in the clinic.  相似文献   

3.
Chemical transformation studies of the marine sesquiterpene phenol (S)-(+)-curcuphenol (1), isolated from the Jamaican sponges Myrmekioderma styx, were accomplished. In order to optimize the activity and better understand the SAR of (S)-(+)-curcuphenol, nineteen semisynthetic analogs were prepared and evaluated for activity against infectious diseases. A number of analogs showed significant activity against Mtb and Leishmania donovani, while showed good to moderate activities in antibacterial and antifungal assays as well as against Plasmodium falciparium (D6 clone) and (W2 clone). The analogs a, c, h, and r exhibited Mtb activity with MICs of 24.6, 41.2, 6.90, and 50.5 microM, respectively. Analog f showed enhanced activity against L. donovani with an IC50 of 0.6 microM and IC90 of 40 microM respectively.  相似文献   

4.
Series of flavones and methyl-4H-1-benzopyran-4-ones carrying mono or diamidinobenzimidazoles at different positions were synthesized and evaluated for antibacterial and antifungal activities against E. coli, S. aureus, MRSA (methicillin-resistant S. aureus), MRSE (methicillin-resistant S. epidermidis), S. faecalis and C. albicans, C. krusei. The results showed that while all diamidines are inactive, the compounds having monoamidinobenzimidazoles at the C-6 position of the 2-phenyl-4H-1-benzopyran-4-one have potent antibacterial activities, particularly, against Gram-positive bacteria. Compounds 23 and 22 exhibited the best inhibitory activity with MIC values of 1.56 microg/ml against S. aureus, MRSA, MRSE and 3.12 microg/ml against C. albicans, respectively.  相似文献   

5.
Ten xanthones with one or two isoprenoid groups and a prenylated benzophenone isolated from roots of Cudrania cochinchinensis (Moraceae) were tested for their antimicrobial activities against Bacillus subtilis and methicillin-resistant Staphylococcus aureus (MRSA). Among these compounds, gerontoxanthone H exhibited considerable antibacterial activity against B. subtilis (MIC = 1.56 microg/ml). Four xanthones, gerontoxanthone I, toxyloxanthone C, cudraxanthone S, and 1,3,7-trihydroxy-2-prenylxanthone, showed weak antibacterial activity against the bacterium (MICs = 3.13-6.25 microg/ml). These compounds also exhibited similar MIC values against methicillin-sensitive S. aureus, MRSAs, and Micrococcus luteus.  相似文献   

6.
The alarming increase in infections caused by multiple drug resistant bacteria including methicillin-resistant Staphylococcus aureus has prompted a desperate search for new antimicrobials. Augmenting the discoveries of completely new scaffolds with antimicrobial activity are efforts aimed at modifying existing molecules to optimize activity or reduce toxicity. We report herein the parallel solid-phase synthesis of analogues of the cationic antimicrobial peptide gramicidin S (GS) using amino acid side chain attachment strategy. The ornithine (Orn) residues were replaced by glutamine (Gln) and the aromatic d-phenylalanine (Phe) were replaced by different aromatic d-amino acids. Additional Gln containing GS analogues with all the possible combinations of the hydrophobic amino acids valine and leucine were also synthesized. In this work we also report the antibacterial activity of these analogs against several clinically-important drug-resistant Gram-positive and Gram-negative pathogens.  相似文献   

7.
Previous biochemical investigations on the Saccharomyces cerevisiae a-factor indicated that this lipopeptide pheromone [YIIKGVFWDPAC(farnesyl)OMe] might adopt a type II beta-turn at positions 4 and 5 of the peptide sequence. To test this hypothesis, we synthesized five analogs of a-factor, in which residues at positions 4 and 5 were replaced with: L-Pro4(I); D-Pro4(II); L-Pro4-D-Ala5(III); D-Pro4-L-Ala5(IV); or Nle4(V). Analogs were purified to > 99% homogeneity as evidenced by HPLC and TLC and were characterized by mass spectrometry and amino acid analysis. Using a growth arrest assay the conformationally restricted a-factor analogs I and III were found to be almost 50-fold more active than the diastereometric homologs II and IV and were equally active to wild-type a-factor. Replacement of Lys4 with the isosteric Nle4 almost abolished the activity of the pheromone. Thus, the incorporation of residues that promote a type II beta-turn compensated for the loss of the favorable contribution of the Lys4 side chain to pheromone activity. CD spectra on these peptides suggested that they were essentially disordered in both TFE/H2O and in the presence of DMPC vesicles. There was no correlation between CD peak shape and biological activity. Using fluorescence spectroscopy we measured the interaction of lipid vesicles with these position 4 and 5 analogs as well as with three a-factor analogs with a modified farnesyl group. The results indicated that modifications of both the peptide sequence and the lipid moiety affect partitioning into lipid, and that no correlation existed between the propensity of a pheromone to partition into the lipid and its biological activity.  相似文献   

8.
Three novel structural series of 4″-O-(1-aralkyl-1,2,3-triazol-4-methyl-carbamoyl) azithromycin analogs were designed, synthesized and evaluated for their in vitro antibacterial activity. All the target compounds exhibited excellent activity against erythromycin-susceptible Streptococcus pyogenes, and significantly improved activity against three phenotypes of erythromycin-resistant Streptococcus pneumoniae compared with clarithromycin and azithromycin. Among the three series of azithromycin analogs, the novel series of 11,4″-disubstituted azithromycin analogs 9ak exhibited the most effective and balanced activity against susceptible and resistant bacteria. Among them, compound 9j showed the most potent activity against Staphylococcus aureus ATCC25923 (0.008 µg/mL) and Streptococcus pyogenes R2 (1 µg/mL). Besides, all the 11,4″-disubstituted azithromycin analogs 9ak except 9f shared the identical activity with the MIC value <0.002 µg/mL against Streptococcus pyogenes S2. Furthermore, compounds 9g, 9h, 9j and 9k displayed significantly improved activity compared with the references against all the three phenotypes of resistant S. pneumoniae. Particularly, compound 9k was the most effective (0.06, 0.03 and 0.125 µg/mL) against all the erythromycin-resistant S. pneumoniae expressing the erm gene, the mef gene and the erm and mef genes, exhibiting 2133, 133 and 2048-fold more potent activity than azithromycin, respectively.  相似文献   

9.
We report the synthesis, in vitro antiprotozoal (against Plasmodium and Leishmania), antimicrobial, cytotoxicity (Vero and MetHb-producing properties), and in vivo antimalarial activities of two series of 8-quinolinamines. N1-{4-[2-(tert-Butyl)-6-methoxy-8-quinolylamino]pentyl}-(2S/2R)-2-aminosubstitutedamides (21-33) and N1-[4-(4-ethyl-6-methoxy-5-pentyloxy-8-quinolylamino)pentyl]-(2S/2R)-2-aminosubstitutedamides (51-63) were synthesized in six steps from 6-methoxy-8-nitroquinoline and 4-methoxy-2-nitro-5-pentyloxyaniline, respectively. Several analogs displayed promising antimalarial activity in vitro against Plasmodium falciparum D6 (chloroquine-sensitive) and W2 (chloroquine-resistant) clones with high selectivity indices versus mammalian cells. The most promising analogs (21-24) also displayed potent antimalarial activity in vivo in a Plasmodium berghei-infected mouse model. Most interestingly, many analogs exhibited promising in vitro antileishmanial activity against Leishmania donovani promastigotes, and antimicrobial activities against a panel of pathogenic bacteria and fungi. Several analogs, notably 21-24, 26-32, and 60, showed less MetHb formation compared to primaquine indicating the potential of these compounds in 8-quinolinamine-based antimalarial drug development.  相似文献   

10.
Cecropin D was synthesized by solid-phase methods and shown to be homogeneous and of correct composition and molecular weight. It was indistinguishable from natural cecropin D and constitutes a structure proof for this peptide. Several analogs of cecropin D were synthesized and used to draw conclusions about the structural features contributing to antibacterial activity. They included [Lys1]cecropin D, [Gln3, Leu4] cecropin D, and cecropin D-(9-37). It was concluded that a strongly basic NH2-terminal segment is a prerequisite for antibacterial activity. A hybrid analog cecropin A-(1-11) D-(12-37) was designed and predicted to have enhanced potency. It was found to be 5 to 55 times as active as cecropin D against six of the bacteria tested and was slightly more active than cecropin A. However, against Bacillus subtilis Bs11 the analog was 6 times more active than cecropin A.  相似文献   

11.
The antibiotic gramicidin S (GS) has the structure of cyclo (-L-Val1-L-Orn2-L-Leu3-D-Phe4-L-Pro5-L-Val1'-L-Orn2'-L-Leu3'-D-Phe4'-L-Pro5'-) and is basic in character. Five GS analogs including [Gly1,1']-GS and the neutral [L-Hnv2,2']-GS (Hnv represents delta-hydroxynorvaline) were synthesized by the solid-phase method to evaluate the role of L-Val1,1' and L-Orn2,2' residues in GS. The hybrid analogs [( Gly1]-GS and [L-Hnv2]-GS) and [D-Tyr4,4']-GS showed high antibacterial activities, whereas [Gly1,1']-GS and [L-Hnv2,2']-GS possessed no activity. Inhibitory effects by these analogs for the adsorption of 14C-labeled GS on cells of bacteria sensitive to GS were determined. The structure-activity relationship of GS is discussed on the basis of the results on these GS analogs.  相似文献   

12.
A series of benzimidazole-5-carboxylic acid alkyl ester derivatives carrying amide or amidine substituted methyl or phenyl groups at the position C-2 were synthesised and evaluated for antibacterial and antifungal activities against S. aureus, methicillin resistant S. aureus (MRSA), S. faecalis, methicillin resistant S. epidermidis (MRSE), E. coli and C. albicans. The results showed that while all simple acetamides are essentially inactive, aromatic amides and amidines have potent antibacterial activities. Aromatic amidine derivatives 13 f-h exhibited the best inhibitory activity with 1.56-0.39 microg/mL MIC values against MRSA and MRSE.  相似文献   

13.
M Kawai  U Nagai 《Biopolymers》1978,17(6):1549-1565
In order to study the role of D -amino acid residues in keeping the stable β-sheet conformation and in the antimicrobial activity of gramicidin S (GS), the four analogs of GS containing D -Ala, L -Ala, Gly, and Aib (α-aminoisobutyric acid) in place of D -Phe were synthesized. D -Ala-and Gly-containing analogs showed antimicrobial activity, while those containing L -Ala and Aib showed no activity. Conformation of these analogs and their derivatives were studied by comparison of ORD and CD spectra and by slective methylation method. It is concluded that the biologically active analogs have β-sheet conformation while inactive analogs have a much different conformation from that of GS. This indicates that D -Ala-Pro and Gly-Pro sequences favor taking a β-bend form but L -Ala-Pro and Aib-Pro sequences do not because the presence of L -side methyl group on the α-carbon atom of L Ala and Aib residues destabilizes the β-bend form. This would explain why the inactive analogs which take a different conformation from that of the active ones result in the loss of activity.  相似文献   

14.
The sulfhydryl groups required for the catalytic activity of gramicidin S synthetase of Bacillus brevis and Escherichia coli isoleucyl tRNA synthetase were compared. In gramicidin S synthetase 2(GS 2), about four sulfhydryl groups react rapidly with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) or N-ethylmaleimide (NEM), and are essential for gramicidin S formation in the presence of gramicidin S synthetase 1 (GS 1). These sulfhydryl groups are protected against DTNB and NEM reactions by the preincubation of GS 2 with amino acid substrates in the presence of ATP and MgCl2, like the sulfhydryl groups that react rapidly with DTNB or NEM and are required for the catalytic activity of GS 1 and isoleucyl tRNA synthetase. In GS 2, GS 1, and isoleucyl tRNA synthetase, the sulfhydryl group that reacts rapidly with NEM and is required for the catalytic activity is involved in the amino acid binding as a thioester. In isoleucyl tRNA synthetase, it is suggested that isoleucine may be transferred from the isoleucine thioester enzyme complex to tRNA by a mechanism similar to that proposed for gramicidin S synthetase.  相似文献   

15.
A series of (S)-N-(1,4-naphthoquinon-2-yl)-alpha-amino acid methyl esters 3-9, 2-N,N-dialkylamino-1,4-naphthoquinones 10-11 and 2-hydroxy-3-(2'-mercaptoimidazolyl)-1,4-naphthoquinones and their cyclic analogs 12-15 were synthesized and evaluated for antifungal and antibacterial activities. The structure-activity relationships of these compounds were studied and the results show that the compounds 9b and 13c exhibited in vitro antifungal activity against Candida albicans, Cryptococcus neoformans, and Sporothrix schenckii, whereas compound 6a showed in vitro antibacterial activity against Streptococcus faecalis, K. pneumoniae, Escherichia coli, and Staphylococcus aureus.  相似文献   

16.
To understand how peptide organization in aqueous solution might affect the activity of antimicrobial peptides, the potency of various dermaseptin S4 analogs was assessed against human red blood cells (RBC), protozoa, and several Gram-negative bacteria. Dermaseptin S4 had weak antibacterial activity but potent hemolytic or antiprotozoan effects. K(4)K(20)-S4 was 2-3-fold more potent against protozoa and RBC, yet K(4)K(20)-S4 was more potent by 2 orders of magnitude against bacteria. K(4)-S4 had similar behavior as K(4)K(20)-S4, but K(20)-S4 and analogous negative charge substitutions were as active as dermaseptin S4 or had reduced activity. Binding experiments suggested that potency enhancement was not the result of increased affinity to target cells. In contrast, potency correlated well with aggregation properties. Fluorescence studies indicated that K(20)-S4 and all negative charge substitutions were as aggregated as dermaseptin S4, whereas K(4)-S4 and K(4)K(20)-S4 were clearly less aggregated. Overall, the data indicated that N-terminal domain interaction between dermaseptin S4 monomers is responsible for the peptide's oligomerization in solution and, hence, for its limited spectrum of action. Moreover, bell-shaped dose-response profiles obtained with bacteria but not with protozoa or RBC implied that aggregation can have dramatic consequences on antibacterial activity. Based on these results, we tested the feasibility of selectivity reversal in the activity of dermaseptin S4. Tampering with the composition of the hydrophobic domains by reducing hydrophobicity or by increasing the net positive charge affected dramatically the peptide's activity and resulted in various analogs that displayed potent antibacterial activity but reduced hemolytic activity. Among these, maximal antibacterial activity was displayed by a 15-mer version that was more potent by 2 orders of magnitude compared with native dermaseptin S4. These results emphasize the notion that peptide-based antibiotics represent a highly modular synthetic antimicrobial system and provide indications of how the peptide's physico-chemical properties affect potency and selectivity.  相似文献   

17.
AIMS: To assess the activity of Brevibacillus brevis (formerly Bacillus brevis) Nagano and the antibiotic it produces, gramicidin S, against the plant pathogen Botrytis cinerea. METHODS AND RESULTS: Germination and growth of Bot. cinerea were assessed in the presence of B. brevis or gramicidin S in liquid media, on solid media and on leaf sections of Chinese cabbage. Germination was 10-fold more sensitive to gramicidin S than growth. Inhibition of Bot. cinerea was greater in liquid media compared with on solid media. Activity of gramicidin S against Bot. cinerea on leaf sections was much lower than in vitro. In vitro inhibition of Bot. cinerea by B. brevis Nagano was similar to equivalent levels of gramicidin. CONCLUSIONS: Antibiosis, via gramicidin S, is the mode of antagonism exhibited by B. brevis Nagano against Bot. cinerea in vitro. SIGNIFICANCE AND IMPACT OF THE STUDY: The mode of antagonism of B. brevis against Bot. cinerea was elucidated. The differing activity of gramicidin S against Bot. Cinerea in vitro and on leaf sections indicates one mechanism by which biocontrol activity may differ between laboratory and field conditions.  相似文献   

18.
1,2-Bis-[2-(5-H/Me/Cl/NO2)-1H-benzimidazolyl]-1,2-ethanediols (L1-L4), 1,4-bis-[2-(5-H/Me/Cl)-1H-benzimidazolyl]-1,2,3,4-butanetetraols (L5-L7) and their complexes with ZnCl2, CdCl2 and HgCl2 were synthesized and antibacterial activity of the compounds was tested toward Staphylococcus aureus, S. epidermidis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi, Shigella flexneri, Proteus mirabilis and antifungal activity against Candida albicans. HgII complexes have a considerably higher antimicrobial activity against all microorganisms. Some HgII complexes show higher antifungal activity than clotrimazole toward C. albicans. Zn2(L3)Cl4, Zn2(L4)Cl4, and Cd(L3)Cl2 were moderately effective against S. aureus and S. epidermidis; Cd(L4)Cl2 exhibited a weak activity only against S. epidermidis.  相似文献   

19.
In this study, a series of novel phenyl- and benzimidazole-substituted benzyl ethers were synthesized and evaluated for antibacterial and antifungal activities against Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), Escherichia coli, Candida albicans, and Candida krusei. Compound 6g exhibited the most potent antibacterial activity with lowest MIC values of 3.12 and 6.25 microg/mL against S. aureus and MRSA, respectively.  相似文献   

20.
A library of hydroxycinnamic acid amides (HCAAs) and analogues were synthesized using solid-phase synthesis technique. These compounds were screened for antibacterial against methicillin-resistant Staphylococcus aureus (MRSA) (11 strains) and vancomycin-resistant S. aureus (VRSA) (4 strains). Dihydrocaffeoyl analogues showed activity against VRSA which were better than the reference drugs, vancomycin and oxacillin. These compounds also exhibited antibacterial activity against MRSA, which were more potent than oxacillin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号