首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Addition of cholestatic doses of chlorpromazine-HC1 to the perfusate of isolated rat livers produces widespread changes in hepatocyte membrane structure. These findings include a marked increase in intrasinusoidal cytoplasmic bullae, appearance of intracellular vacuoles within hepatocytes at both sinusoidal and biliary poles, dilation of bile canaliculi and evagination of canalicular diverticuli, and the formation of myeloid bodies within hepatocytes. These findings obtained in the bile acid depleted perfused liver may result from physiochemical interactions between chlorpromazine or its metabolites and lipid-protein components of cell membranes, consistent with chlorpromazine's properties as a cationic detergent. They occur independently of the vasoconstrictive effects of chlorpromazine and suggest that chlorpromazine may produce cholestasis by altering hepatocyte membrane function.  相似文献   

2.
3.
4.
At [Na+]o = 118 mM the concentrative transfer of cholic and taurocholic acid from the perfusate into the isolated rat liver displays saturation kinetics (taurocholate: V = 299 nmol-min-1-g-1, Km = 61 muM; Cholate: V=327 nmol-min-1-g-1, Km = 436 muM). Perfusion with an isotonic sodium-free medium did not change the feature of a carrier-mediated transport but did markedly reduce V without affecting Km (taurocholate: V = 65 nmol-min-1-g-1, Km = 78 muM; cholate: V = 104 nmol-min-1-g-1, Km = 354 muM). It was experimentally assured that the observed reduction of bile salt uptake was not a consequence of regurgitation of bile salts or due to an excessive intracellular accumulation during cholestasis in the sodium-free state. The rate of taurocholate efflux is very low when compared with the rapid rate of the uptake. A stimulatory action of extracellular sodium on this pathway was also observed. Inhibition of the (Na+ + K+)-ATPase by 1 mM ouabain resulted in a decrease of bile salt uptake. Activation of the enzyme by potassium readmission to a K+-deprived liver enhanced bile salt uptake. The immediate response to alteration of the enzyme activity suggests a close association of a fraction of bile acid active transport with the sodium pump.  相似文献   

5.
6.
H Watanabe 《Steroids》1977,29(6):837-848
An isolated rat liver perfusion system has been utilized in a study of the biliary excretion of estrone glucuronide. The estrogen was initially shown to be excreted without prior metabolism. Disappearance from the medium was rapid and biliary concentrations exceeded that in the medium by more than a thousand-fold. Disappearance rates were decreased when medium estrone glucuronide concentrations exceeded 0.29 mM. Inhibition by other steroidal conjugates, testosterone glucuronide, 2-methoxyestrone (3-hydroxy-2-methoxy-estra-1,3,5(10)-trien-17-one glucuronide and 2-hydroxyestrone (2,3-dihydroxyestra-1,3,5(10)-trien-17-one) glutathione, was also demonstrated. Phenolphthalein glucuronide, at 10 times the molar concentration of estrone glucuronide, did not affect the medium clearance of the latter compound. These findings indicate the possibility of utilizing this system for further studies of possible interactions by other organic compounds for excretion via the biliary route.  相似文献   

7.
Chloroquine, when introduced into isolated perfused rat livers, caused a substantial output of cholesterol into bile, occurring after 30 min and peaking at 60 min, whereas the biliary output of acid phosphatase and beta-glucuronidase increased only after 90 min. The origins of this bile-salt-independent cholesterol are discussed.  相似文献   

8.
The output of proteins into bile was studied by using isolated perfused rat livers. Replacement of rat blood with defined perfusion media deprived the liver of rat serum proteins (albumin, immunoglobulin A) and resulted in a rapid decline in the amounts of these proteins in bile. When bovine serum albumin was incorporated into the perfusion medium it appeared in bile within 20 min and the amount in the bile was determined by the concentration of the protein in the perfusion medium. The use of a defined perfusion medium also deprived the livers of bile salts and the amounts of these, and of plasma-membrane enzymes [5'-nucleotidase (EC 3.1.3.5) and phosphodiesterase I], in bile declined rapidly. Introduction of micelle-forming bile salts (taurocholate or glycodeoxycholate) to the perfusion medium 80 min after liver isolation markedly increased the output of plasma-membrane enzymes but had no effect on the other proteins. The magnitude of this response was dependent on the bile salt used and its concentration in bile; there was little effect on plasma-membrane enzyme output until the critical micellar concentration of the bile salt had been exceeded in the bile. A bile salt analogue, taurodehydrocholate, which does not form micelles, did not produce the enhanced output of plasma-membrane enzymes. This work supports the view that the output of plasma-membrane enzymes in bile is a consequence of bile salt output and also provides evidence for mechanisms by which serum proteins enter the bile.  相似文献   

9.
10.
Isolated livers from fed rats were perfused with a medium containing glucose labeled uniformly with 14C and specifically with 3H. There was considerable formation of glucose from endogenous sources but simultaneously uptake of about half of the 14C in glucose. After 2 hours the 3H14C ratios in perfusate glucose decreased by 55–60% with (2-3H, U-14C), 40–50% with (5-3H, U-14C), 25–30% with (3-3H or 4-3H, U-14C) and by 10–15% with (6-3H, U-14C) glucose. Qualitatively comparable patterns were obtained with rat hepatocytes. These results demonstrate recycling of carbon between glucose and pyruvate. Superimposed upon this there is an extensive futile cycle between glucose and glucose 6-P. There is also futile cycling between fructose 6-P and fructose 1,6 P2 and to a small extent between phosphoenol pyruvate and pyruvate.  相似文献   

11.
It has been proposed that in the heart, ranolazine shifts the energy source from fatty acids to glucose oxidation by inhibiting fatty acid oxidation. Up to now no mechanism for this inhibition has been proposed. The purpose of this study was to investigate if ranolazine also affects hepatic fatty acid oxidation, with especial emphasis on cell membrane permeation based on the observations that the compound interacts with biological membranes. The isolated perfused rat liver was used, and [1-14C]oleate transport was measured by means of the multiple-indicator dilution technique. Ranolazine inhibited net uptake of [1-14C]-oleate by impairing transport of this fatty acid. The compound also diminished the extra oxygen consumption and ketogenesis driven by oleate and the mitochondrial NADH/NAD+ ratio, but stimulated 14CO2 production. These effects were already significant at 20 μM ranolazine. Ranolazine also inhibited both oxygen consumption and ketogenesis driven by endogenous fatty acids in substrate-free perfused livers. In isolated mitochondria ranolazine inhibited acyl-CoA oxidation and β-hydroxybutyrate or α-ketoglutarate oxidation coupled to ADP phosphorylation. It was concluded that ranolazine inhibits fatty acid uptake and oxidation in the liver by at least two mechanisms: inhibition of cell membrane permeation and by an inhibition of the mitochondrial electron transfer via pyridine nucleotides.  相似文献   

12.
13.
14.
Perfusion of an isolated rat kidney with labelled bile acids, in a protein-free medium, resulted in the urinary excretion of the labelled bile acid, 3% being converted into polar metabolities in 1h. These metabolities were neither glycine nor taurine conjugates, nor bile acid glucuronides, and on solovolysis yielded the free bile acid. On t.l.c. the metabolite of [24-14C]lithocholic acid had the mobility of lithocholate 3-sulphate. The principal metabolite of [24-14C]chenodeoxycholic acid had the mobility of chenodeoxycholate 7-sulphate; trace amounts appeared as chenodeoxycholate 3-sulphate. [35S]sulphate was incorporated in chenodeoxycholic acid by the kidney, resulting in a similar pattern of sulphation. No disulphate salt of chenodeoxycholic acid was detected. These findings lend support to the hypothesis that renal synthesis may account for some of the bile acid sulphates present in urine in the cholestatic syndrome in man.  相似文献   

15.
1. Loading the isolated perfused liver from well-fed rats with xylitol (20mm) caused a depletion of adenine nucleotides and Pi and an accumulation of α-glycerophosphate. The ATP content fell to 66% of the control value after 10min and to 32% after 80min. The ADP and AMP contents also fell. After 80min 63% of the total adenine nucleotides and 59% of the Pi had been lost. 2. The α-glycerophosphate content rose from 0.13 to 4.74μmol/g at 10min and reached 8.02μmol/g at 40min. 3. Xylitol was rapidly metabolized, the main products being glucose, lactate and pyruvate. 4. The [lactate]/[pyruvate] ratio in the presence of xylitol rose to 30–40. 5. On perfusion of livers from starved animals the main product of xylitol metabolism was glucose and the mean ratio xylitol removed/glucose formed was 1.29 (corrected for endogenous glucose and lactate production). This is close to the predicted value of 1.2. 6. Evidence is presented indicating that the loss of adenine nucleotides caused by xylitol is not due to the increased ATP consumption but to the accumulation of α-glycerophosphate and depletion of Pi. 7. The loss of adenine nucleotides accounts for the hyperuricaemia which can occur after xylitol infusion in man. 8. The relevance of the findings to the clinical use of xylitol as an energy source is discussed.  相似文献   

16.
17.
Clearance and degradation of the glycoprotein, asialofetuin (AF), by the isolated perfused rat liver at supranormal temperatures were investigated. The half-life for disappearance of AF was similar at 37, 41, and 42 degrees C, P greater than 0.05. There was a significant difference between the amount of hydrolysis of AF at 37, 41, and 42 degrees C, P less than 0.05. This indicates that there was significant retardation of lysosomal proteolysis or receptor endocytosis by the hepatocyte at elevated temperatures.  相似文献   

18.
19.
20.
1. Isolated livers from fed male rats were perfused for 2 h with T4 (L-thyroxine), T3 (L-3,3',5-tri-iodothyronine) or rT3 (L-3,3',5'-tri-iodothyronine) at different pH values (7.1--7.6) in a fully synthetic medium, whereby normal metabolic functions were maintained without addition of rat blood constituents or albumin. 2. T3 output into the medium and net T3 production reached a maximum at a pH of the medium of 7.2 and significantly decreased with alteration of the pH when livers were perfused with T4 as a substrate. 3. However, the net T4 and T3 uptake by the liver, as well as the hepatic T4 and T3 content after perfusion, were not dependent on the pH of the perfusion when livers were offered T4 or T3 as substrates respectively. 4. Determination of intracellular pH by the analysis of the distribution of the weak acid dimethyloxazolidinedione allows the conclusion that the pH optimum of iodothyronine 5'-deiodinase in the intact perfused liver corresponds to the maximum determined in vitro for the membrane-bound enzyme localized in the endoplasmic reticulum. 5. The rapid 5'-deiodination of rT3 to 3,3'-T2 (L-3,3'-di-iodothyronine), the fast disappearance of 3,3'-T2, and the fact that no net rT3 production from T4 could be detected, supports the hypothesis that in rat liver iodothyronine 5'-deiodinase activity seems to predominate over iodothyronine 5-deiodinase activity. 6. Thus the rat liver can be considered in normal physiological situations as an organ forming T3 from T4 and deiodinating rT3 originating from extrahepatic tissues, whereby the cellular iodothyronine 5'-deiodination rate is controlled by the intracellular pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号